Loading…

A perspective on semiconductor-based superconducting qubits

Following the demonstration of semiconductor-based Josephson junctions, which are fully tunable by electrical means, new routes have been opened for the study of hybrid semiconductor–superconductor qubits. These include semiconductor-based transmon qubits, single-spin Andreev qubits, and fault-toler...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2020-12, Vol.117 (24)
Main Author: Aguado, Ramón
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-71fb231fc432a0f161df4acb811ae7238c108e9ad1d205e93400d483b2d0eb0e3
cites cdi_FETCH-LOGICAL-c323t-71fb231fc432a0f161df4acb811ae7238c108e9ad1d205e93400d483b2d0eb0e3
container_end_page
container_issue 24
container_start_page
container_title Applied physics letters
container_volume 117
creator Aguado, Ramón
description Following the demonstration of semiconductor-based Josephson junctions, which are fully tunable by electrical means, new routes have been opened for the study of hybrid semiconductor–superconductor qubits. These include semiconductor-based transmon qubits, single-spin Andreev qubits, and fault-tolerant topological qubits based on Majorana zero modes. In this perspective, we review recent progress in the path toward such hybrid qubit designs. After a short introduction and a brief digression about the historical roadmap that has led to the experimental state-of-the-art, the emphasis is placed on superconducting qubits based on semiconductor nanowires.
doi_str_mv 10.1063/5.0024124
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0024124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469876242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-71fb231fc432a0f161df4acb811ae7238c108e9ad1d205e93400d483b2d0eb0e3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4Elh60yS_cJTKX5BwYueQzYfkmI32yRb8N-70kUPgqdhhod34CXkEmGBULLbYgFAOVJ-RGYIVZUzxPqYzACA5WVT4Ck5i3EzrgVlbEbulllvQuyNSm5vMt9l0Wyd8p0eVPIhb2U0OovDiKaj696z3dC6FM_JiZUf0VxMc07eHu5fV0_5-uXxebVc54pRlvIKbUsZWsUZlWCxRG25VG2NKE1FWa0QatNIjZpCYRrGATSvWUs1mBYMm5OrQ24f_G4wMYmNH0I3vhSUl01dlZTTUV0flAo-xmCs6IPbyvApEMR3N6IQUzejvTnYqFySyfnuB-99-IWi1_Y__Df5C9iScao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469876242</pqid></control><display><type>article</type><title>A perspective on semiconductor-based superconducting qubits</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Aguado, Ramón</creator><creatorcontrib>Aguado, Ramón</creatorcontrib><description>Following the demonstration of semiconductor-based Josephson junctions, which are fully tunable by electrical means, new routes have been opened for the study of hybrid semiconductor–superconductor qubits. These include semiconductor-based transmon qubits, single-spin Andreev qubits, and fault-tolerant topological qubits based on Majorana zero modes. In this perspective, we review recent progress in the path toward such hybrid qubit designs. After a short introduction and a brief digression about the historical roadmap that has led to the experimental state-of-the-art, the emphasis is placed on superconducting qubits based on semiconductor nanowires.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0024124</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electrical junctions ; Fault tolerance ; Josephson junctions ; Nanowires ; Qubits (quantum computing) ; Superconductivity</subject><ispartof>Applied physics letters, 2020-12, Vol.117 (24)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-71fb231fc432a0f161df4acb811ae7238c108e9ad1d205e93400d483b2d0eb0e3</citedby><cites>FETCH-LOGICAL-c323t-71fb231fc432a0f161df4acb811ae7238c108e9ad1d205e93400d483b2d0eb0e3</cites><orcidid>0000-0002-7464-7363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0024124$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Aguado, Ramón</creatorcontrib><title>A perspective on semiconductor-based superconducting qubits</title><title>Applied physics letters</title><description>Following the demonstration of semiconductor-based Josephson junctions, which are fully tunable by electrical means, new routes have been opened for the study of hybrid semiconductor–superconductor qubits. These include semiconductor-based transmon qubits, single-spin Andreev qubits, and fault-tolerant topological qubits based on Majorana zero modes. In this perspective, we review recent progress in the path toward such hybrid qubit designs. After a short introduction and a brief digression about the historical roadmap that has led to the experimental state-of-the-art, the emphasis is placed on superconducting qubits based on semiconductor nanowires.</description><subject>Applied physics</subject><subject>Electrical junctions</subject><subject>Fault tolerance</subject><subject>Josephson junctions</subject><subject>Nanowires</subject><subject>Qubits (quantum computing)</subject><subject>Superconductivity</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4Elh60yS_cJTKX5BwYueQzYfkmI32yRb8N-70kUPgqdhhod34CXkEmGBULLbYgFAOVJ-RGYIVZUzxPqYzACA5WVT4Ck5i3EzrgVlbEbulllvQuyNSm5vMt9l0Wyd8p0eVPIhb2U0OovDiKaj696z3dC6FM_JiZUf0VxMc07eHu5fV0_5-uXxebVc54pRlvIKbUsZWsUZlWCxRG25VG2NKE1FWa0QatNIjZpCYRrGATSvWUs1mBYMm5OrQ24f_G4wMYmNH0I3vhSUl01dlZTTUV0flAo-xmCs6IPbyvApEMR3N6IQUzejvTnYqFySyfnuB-99-IWi1_Y__Df5C9iScao</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Aguado, Ramón</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7464-7363</orcidid></search><sort><creationdate>20201214</creationdate><title>A perspective on semiconductor-based superconducting qubits</title><author>Aguado, Ramón</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-71fb231fc432a0f161df4acb811ae7238c108e9ad1d205e93400d483b2d0eb0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Electrical junctions</topic><topic>Fault tolerance</topic><topic>Josephson junctions</topic><topic>Nanowires</topic><topic>Qubits (quantum computing)</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguado, Ramón</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguado, Ramón</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A perspective on semiconductor-based superconducting qubits</atitle><jtitle>Applied physics letters</jtitle><date>2020-12-14</date><risdate>2020</risdate><volume>117</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Following the demonstration of semiconductor-based Josephson junctions, which are fully tunable by electrical means, new routes have been opened for the study of hybrid semiconductor–superconductor qubits. These include semiconductor-based transmon qubits, single-spin Andreev qubits, and fault-tolerant topological qubits based on Majorana zero modes. In this perspective, we review recent progress in the path toward such hybrid qubit designs. After a short introduction and a brief digression about the historical roadmap that has led to the experimental state-of-the-art, the emphasis is placed on superconducting qubits based on semiconductor nanowires.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0024124</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7464-7363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-12, Vol.117 (24)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0024124
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Applied physics
Electrical junctions
Fault tolerance
Josephson junctions
Nanowires
Qubits (quantum computing)
Superconductivity
title A perspective on semiconductor-based superconducting qubits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20perspective%20on%20semiconductor-based%20superconducting%20qubits&rft.jtitle=Applied%20physics%20letters&rft.au=Aguado,%20Ram%C3%B3n&rft.date=2020-12-14&rft.volume=117&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0024124&rft_dat=%3Cproquest_scita%3E2469876242%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-71fb231fc432a0f161df4acb811ae7238c108e9ad1d205e93400d483b2d0eb0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469876242&rft_id=info:pmid/&rfr_iscdi=true