Loading…
Quantum dynamical simulations of intra-chain exciton diffusion in an oligo (para-phenylene vinylene) chain at finite temperature
We report on quantum dynamical simulations of exciton diffusion in an oligo(para-phenylene vinylene) chain segment with 20 repeat units (OPV-20) at finite temperature, complementary to our recent study of the same system at T = 0 K [R. Binder and I. Burghardt, J. Chem. Phys. 152, 204120 (2020)]. Acc...
Saved in:
Published in: | The Journal of chemical physics 2020-11, Vol.153 (18), p.184107-184107 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on quantum dynamical simulations of exciton diffusion in an oligo(para-phenylene vinylene) chain segment with 20 repeat units (OPV-20) at finite temperature, complementary to our recent study of the same system at T = 0 K [R. Binder and I. Burghardt, J. Chem. Phys. 152, 204120 (2020)]. Accurate quantum dynamical simulations are performed using the multi-layer multi-configuration time-dependent Hartree method as applied to a site-based Hamiltonian comprising 20 electronic states of Frenkel type and 460 vibrational modes, including site-local quinoid-distortion modes along with site-correlated bond-length alternation (BLA) modes, ring torsional modes, and an explicit harmonic-oscillator bath. A first-principles parameterized Frenkel–Holstein type Hamiltonian is employed, which accounts for correlations between the ring torsional modes and the anharmonically coupled BLA coordinates located at the same junction. Thermally induced fluctuations of the torsional modes are described by a stochastic mean-field approach, and their impact on the excitonic motion is characterized in terms of the exciton mean-squared displacement. A normal diffusion regime is observed under periodic boundary conditions, apart from transient localization features. Even though the polaronic exciton species are comparatively weakly bound, exciton diffusion is found to be a coherent—rather than hopping type—process, driven by the fluctuations of the soft torsional modes. Similar to the previous observations for oligothiophenes, the evolution for the most part exhibits a near-adiabatic dynamics of local exciton ground states (LEGSs) that adjust to the local conformational dynamics. However, a second mechanism, involving resonant transitions between neighboring LEGSs, gains importance at higher temperatures. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0027588 |