Loading…

Structural and dynamic properties of soda–lime–silica in the liquid phase

Soda–lime–silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2020-12, Vol.153 (21), p.214505-214505
Main Authors: Serva, Alessandra, Guerault, Allan, Ishii, Yoshiki, Gouillart, Emmanuelle, Burov, Ekaterina, Salanne, Mathieu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423
cites cdi_FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423
container_end_page 214505
container_issue 21
container_start_page 214505
container_title The Journal of chemical physics
container_volume 153
creator Serva, Alessandra
Guerault, Allan
Ishii, Yoshiki
Gouillart, Emmanuelle
Burov, Ekaterina
Salanne, Mathieu
description Soda–lime–silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and diffusion properties of the system at temperatures ranging from 1400 K to 3000 K. We show that Na+ and Ca2+ ions adopt a different structural organization within the silica network, with Ca2+ ions having a greater affinity for non-bridging oxygens than Na+. We further link this structural behavior to their different diffusivities, suggesting that escaping from the first oxygen coordination shell is the limiting step for the diffusion. Na+ diffuses faster than Ca2+ because it is bonded to a smaller number of non-bridging oxygens. The formed ionic bonds are also less strong in the case of Na+.
doi_str_mv 10.1063/5.0029702
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0029702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466096486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423</originalsourceid><addsrcrecordid>eNqd0ctKAzEUBuAgCtbLwjcIuFFh6snkNlmW4g0qLtR1iJkMjUwn02Sm0J3v4Bv6JE5pUXDp6sDPx7lwEDojMCYg6DUfA-RKQr6HRgQKlUmhYB-NhpRkSoA4REcpvQMAkTkbocfnLva266OpsWlKXK4bs_AWtzG0LnbeJRwqnEJpvj4-a79wQ0m-9tZg3-Bu7nDtl70vcTs3yZ2gg8rUyZ3u6jF6vb15md5ns6e7h-lkllmmeJeVUMAbY5I5bhmtHBGEvvGcCSm4UtxKJ61TVNDC5E4RSkRlqTAVYxUvGMvpMbrc9p2bWrfRL0xc62C8vp_M9CYDCkrKnK7IYC-2djhp2bvU6YVP1tW1aVzokx7GFkJyQuVAz__Q99DHZrhkowQowQrxO9zGkFJ01c8GBPTmCZrr3RMGe7W1yfrOdD40_8OrEH-hbsuKfgNzVZQt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466096486</pqid></control><display><type>article</type><title>Structural and dynamic properties of soda–lime–silica in the liquid phase</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Serva, Alessandra ; Guerault, Allan ; Ishii, Yoshiki ; Gouillart, Emmanuelle ; Burov, Ekaterina ; Salanne, Mathieu</creator><creatorcontrib>Serva, Alessandra ; Guerault, Allan ; Ishii, Yoshiki ; Gouillart, Emmanuelle ; Burov, Ekaterina ; Salanne, Mathieu</creatorcontrib><description>Soda–lime–silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and diffusion properties of the system at temperatures ranging from 1400 K to 3000 K. We show that Na+ and Ca2+ ions adopt a different structural organization within the silica network, with Ca2+ ions having a greater affinity for non-bridging oxygens than Na+. We further link this structural behavior to their different diffusivities, suggesting that escaping from the first oxygen coordination shell is the limiting step for the diffusion. Na+ diffuses faster than Ca2+ because it is bonded to a smaller number of non-bridging oxygens. The formed ionic bonds are also less strong in the case of Na+.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0029702</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bonding strength ; Calcium ions ; Chemical Physics ; Deformation effects ; Diffusion rate ; Lime ; Liquid phases ; Molecular dynamics ; Physics ; Properties (attributes) ; Silica glass ; Silicon dioxide ; Sodium</subject><ispartof>The Journal of chemical physics, 2020-12, Vol.153 (21), p.214505-214505</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423</citedby><cites>FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423</cites><orcidid>0000-0002-7525-2494 ; 0000-0002-1753-491X ; 0000-0003-0102-9326 ; 0000-0002-8601-0300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0029702$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03097723$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Serva, Alessandra</creatorcontrib><creatorcontrib>Guerault, Allan</creatorcontrib><creatorcontrib>Ishii, Yoshiki</creatorcontrib><creatorcontrib>Gouillart, Emmanuelle</creatorcontrib><creatorcontrib>Burov, Ekaterina</creatorcontrib><creatorcontrib>Salanne, Mathieu</creatorcontrib><title>Structural and dynamic properties of soda–lime–silica in the liquid phase</title><title>The Journal of chemical physics</title><description>Soda–lime–silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and diffusion properties of the system at temperatures ranging from 1400 K to 3000 K. We show that Na+ and Ca2+ ions adopt a different structural organization within the silica network, with Ca2+ ions having a greater affinity for non-bridging oxygens than Na+. We further link this structural behavior to their different diffusivities, suggesting that escaping from the first oxygen coordination shell is the limiting step for the diffusion. Na+ diffuses faster than Ca2+ because it is bonded to a smaller number of non-bridging oxygens. The formed ionic bonds are also less strong in the case of Na+.</description><subject>Bonding strength</subject><subject>Calcium ions</subject><subject>Chemical Physics</subject><subject>Deformation effects</subject><subject>Diffusion rate</subject><subject>Lime</subject><subject>Liquid phases</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Properties (attributes)</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Sodium</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0ctKAzEUBuAgCtbLwjcIuFFh6snkNlmW4g0qLtR1iJkMjUwn02Sm0J3v4Bv6JE5pUXDp6sDPx7lwEDojMCYg6DUfA-RKQr6HRgQKlUmhYB-NhpRkSoA4REcpvQMAkTkbocfnLva266OpsWlKXK4bs_AWtzG0LnbeJRwqnEJpvj4-a79wQ0m-9tZg3-Bu7nDtl70vcTs3yZ2gg8rUyZ3u6jF6vb15md5ns6e7h-lkllmmeJeVUMAbY5I5bhmtHBGEvvGcCSm4UtxKJ61TVNDC5E4RSkRlqTAVYxUvGMvpMbrc9p2bWrfRL0xc62C8vp_M9CYDCkrKnK7IYC-2djhp2bvU6YVP1tW1aVzokx7GFkJyQuVAz__Q99DHZrhkowQowQrxO9zGkFJ01c8GBPTmCZrr3RMGe7W1yfrOdD40_8OrEH-hbsuKfgNzVZQt</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Serva, Alessandra</creator><creator>Guerault, Allan</creator><creator>Ishii, Yoshiki</creator><creator>Gouillart, Emmanuelle</creator><creator>Burov, Ekaterina</creator><creator>Salanne, Mathieu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7525-2494</orcidid><orcidid>https://orcid.org/0000-0002-1753-491X</orcidid><orcidid>https://orcid.org/0000-0003-0102-9326</orcidid><orcidid>https://orcid.org/0000-0002-8601-0300</orcidid></search><sort><creationdate>20201207</creationdate><title>Structural and dynamic properties of soda–lime–silica in the liquid phase</title><author>Serva, Alessandra ; Guerault, Allan ; Ishii, Yoshiki ; Gouillart, Emmanuelle ; Burov, Ekaterina ; Salanne, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonding strength</topic><topic>Calcium ions</topic><topic>Chemical Physics</topic><topic>Deformation effects</topic><topic>Diffusion rate</topic><topic>Lime</topic><topic>Liquid phases</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Properties (attributes)</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serva, Alessandra</creatorcontrib><creatorcontrib>Guerault, Allan</creatorcontrib><creatorcontrib>Ishii, Yoshiki</creatorcontrib><creatorcontrib>Gouillart, Emmanuelle</creatorcontrib><creatorcontrib>Burov, Ekaterina</creatorcontrib><creatorcontrib>Salanne, Mathieu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serva, Alessandra</au><au>Guerault, Allan</au><au>Ishii, Yoshiki</au><au>Gouillart, Emmanuelle</au><au>Burov, Ekaterina</au><au>Salanne, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and dynamic properties of soda–lime–silica in the liquid phase</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-12-07</date><risdate>2020</risdate><volume>153</volume><issue>21</issue><spage>214505</spage><epage>214505</epage><pages>214505-214505</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Soda–lime–silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and diffusion properties of the system at temperatures ranging from 1400 K to 3000 K. We show that Na+ and Ca2+ ions adopt a different structural organization within the silica network, with Ca2+ ions having a greater affinity for non-bridging oxygens than Na+. We further link this structural behavior to their different diffusivities, suggesting that escaping from the first oxygen coordination shell is the limiting step for the diffusion. Na+ diffuses faster than Ca2+ because it is bonded to a smaller number of non-bridging oxygens. The formed ionic bonds are also less strong in the case of Na+.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0029702</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7525-2494</orcidid><orcidid>https://orcid.org/0000-0002-1753-491X</orcidid><orcidid>https://orcid.org/0000-0003-0102-9326</orcidid><orcidid>https://orcid.org/0000-0002-8601-0300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-12, Vol.153 (21), p.214505-214505
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0029702
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Bonding strength
Calcium ions
Chemical Physics
Deformation effects
Diffusion rate
Lime
Liquid phases
Molecular dynamics
Physics
Properties (attributes)
Silica glass
Silicon dioxide
Sodium
title Structural and dynamic properties of soda–lime–silica in the liquid phase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20dynamic%20properties%20of%20soda%E2%80%93lime%E2%80%93silica%20in%20the%20liquid%20phase&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Serva,%20Alessandra&rft.date=2020-12-07&rft.volume=153&rft.issue=21&rft.spage=214505&rft.epage=214505&rft.pages=214505-214505&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0029702&rft_dat=%3Cproquest_scita%3E2466096486%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466096486&rft_id=info:pmid/&rfr_iscdi=true