Loading…
Structural and dynamic properties of soda–lime–silica in the liquid phase
Soda–lime–silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and...
Saved in:
Published in: | The Journal of chemical physics 2020-12, Vol.153 (21), p.214505-214505 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423 |
---|---|
cites | cdi_FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423 |
container_end_page | 214505 |
container_issue | 21 |
container_start_page | 214505 |
container_title | The Journal of chemical physics |
container_volume | 153 |
creator | Serva, Alessandra Guerault, Allan Ishii, Yoshiki Gouillart, Emmanuelle Burov, Ekaterina Salanne, Mathieu |
description | Soda–lime–silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and diffusion properties of the system at temperatures ranging from 1400 K to 3000 K. We show that Na+ and Ca2+ ions adopt a different structural organization within the silica network, with Ca2+ ions having a greater affinity for non-bridging oxygens than Na+. We further link this structural behavior to their different diffusivities, suggesting that escaping from the first oxygen coordination shell is the limiting step for the diffusion. Na+ diffuses faster than Ca2+ because it is bonded to a smaller number of non-bridging oxygens. The formed ionic bonds are also less strong in the case of Na+. |
doi_str_mv | 10.1063/5.0029702 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0029702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466096486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423</originalsourceid><addsrcrecordid>eNqd0ctKAzEUBuAgCtbLwjcIuFFh6snkNlmW4g0qLtR1iJkMjUwn02Sm0J3v4Bv6JE5pUXDp6sDPx7lwEDojMCYg6DUfA-RKQr6HRgQKlUmhYB-NhpRkSoA4REcpvQMAkTkbocfnLva266OpsWlKXK4bs_AWtzG0LnbeJRwqnEJpvj4-a79wQ0m-9tZg3-Bu7nDtl70vcTs3yZ2gg8rUyZ3u6jF6vb15md5ns6e7h-lkllmmeJeVUMAbY5I5bhmtHBGEvvGcCSm4UtxKJ61TVNDC5E4RSkRlqTAVYxUvGMvpMbrc9p2bWrfRL0xc62C8vp_M9CYDCkrKnK7IYC-2djhp2bvU6YVP1tW1aVzokx7GFkJyQuVAz__Q99DHZrhkowQowQrxO9zGkFJ01c8GBPTmCZrr3RMGe7W1yfrOdD40_8OrEH-hbsuKfgNzVZQt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466096486</pqid></control><display><type>article</type><title>Structural and dynamic properties of soda–lime–silica in the liquid phase</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Serva, Alessandra ; Guerault, Allan ; Ishii, Yoshiki ; Gouillart, Emmanuelle ; Burov, Ekaterina ; Salanne, Mathieu</creator><creatorcontrib>Serva, Alessandra ; Guerault, Allan ; Ishii, Yoshiki ; Gouillart, Emmanuelle ; Burov, Ekaterina ; Salanne, Mathieu</creatorcontrib><description>Soda–lime–silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and diffusion properties of the system at temperatures ranging from 1400 K to 3000 K. We show that Na+ and Ca2+ ions adopt a different structural organization within the silica network, with Ca2+ ions having a greater affinity for non-bridging oxygens than Na+. We further link this structural behavior to their different diffusivities, suggesting that escaping from the first oxygen coordination shell is the limiting step for the diffusion. Na+ diffuses faster than Ca2+ because it is bonded to a smaller number of non-bridging oxygens. The formed ionic bonds are also less strong in the case of Na+.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0029702</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bonding strength ; Calcium ions ; Chemical Physics ; Deformation effects ; Diffusion rate ; Lime ; Liquid phases ; Molecular dynamics ; Physics ; Properties (attributes) ; Silica glass ; Silicon dioxide ; Sodium</subject><ispartof>The Journal of chemical physics, 2020-12, Vol.153 (21), p.214505-214505</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423</citedby><cites>FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423</cites><orcidid>0000-0002-7525-2494 ; 0000-0002-1753-491X ; 0000-0003-0102-9326 ; 0000-0002-8601-0300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0029702$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03097723$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Serva, Alessandra</creatorcontrib><creatorcontrib>Guerault, Allan</creatorcontrib><creatorcontrib>Ishii, Yoshiki</creatorcontrib><creatorcontrib>Gouillart, Emmanuelle</creatorcontrib><creatorcontrib>Burov, Ekaterina</creatorcontrib><creatorcontrib>Salanne, Mathieu</creatorcontrib><title>Structural and dynamic properties of soda–lime–silica in the liquid phase</title><title>The Journal of chemical physics</title><description>Soda–lime–silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and diffusion properties of the system at temperatures ranging from 1400 K to 3000 K. We show that Na+ and Ca2+ ions adopt a different structural organization within the silica network, with Ca2+ ions having a greater affinity for non-bridging oxygens than Na+. We further link this structural behavior to their different diffusivities, suggesting that escaping from the first oxygen coordination shell is the limiting step for the diffusion. Na+ diffuses faster than Ca2+ because it is bonded to a smaller number of non-bridging oxygens. The formed ionic bonds are also less strong in the case of Na+.</description><subject>Bonding strength</subject><subject>Calcium ions</subject><subject>Chemical Physics</subject><subject>Deformation effects</subject><subject>Diffusion rate</subject><subject>Lime</subject><subject>Liquid phases</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Properties (attributes)</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Sodium</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0ctKAzEUBuAgCtbLwjcIuFFh6snkNlmW4g0qLtR1iJkMjUwn02Sm0J3v4Bv6JE5pUXDp6sDPx7lwEDojMCYg6DUfA-RKQr6HRgQKlUmhYB-NhpRkSoA4REcpvQMAkTkbocfnLva266OpsWlKXK4bs_AWtzG0LnbeJRwqnEJpvj4-a79wQ0m-9tZg3-Bu7nDtl70vcTs3yZ2gg8rUyZ3u6jF6vb15md5ns6e7h-lkllmmeJeVUMAbY5I5bhmtHBGEvvGcCSm4UtxKJ61TVNDC5E4RSkRlqTAVYxUvGMvpMbrc9p2bWrfRL0xc62C8vp_M9CYDCkrKnK7IYC-2djhp2bvU6YVP1tW1aVzokx7GFkJyQuVAz__Q99DHZrhkowQowQrxO9zGkFJ01c8GBPTmCZrr3RMGe7W1yfrOdD40_8OrEH-hbsuKfgNzVZQt</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Serva, Alessandra</creator><creator>Guerault, Allan</creator><creator>Ishii, Yoshiki</creator><creator>Gouillart, Emmanuelle</creator><creator>Burov, Ekaterina</creator><creator>Salanne, Mathieu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7525-2494</orcidid><orcidid>https://orcid.org/0000-0002-1753-491X</orcidid><orcidid>https://orcid.org/0000-0003-0102-9326</orcidid><orcidid>https://orcid.org/0000-0002-8601-0300</orcidid></search><sort><creationdate>20201207</creationdate><title>Structural and dynamic properties of soda–lime–silica in the liquid phase</title><author>Serva, Alessandra ; Guerault, Allan ; Ishii, Yoshiki ; Gouillart, Emmanuelle ; Burov, Ekaterina ; Salanne, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonding strength</topic><topic>Calcium ions</topic><topic>Chemical Physics</topic><topic>Deformation effects</topic><topic>Diffusion rate</topic><topic>Lime</topic><topic>Liquid phases</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Properties (attributes)</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serva, Alessandra</creatorcontrib><creatorcontrib>Guerault, Allan</creatorcontrib><creatorcontrib>Ishii, Yoshiki</creatorcontrib><creatorcontrib>Gouillart, Emmanuelle</creatorcontrib><creatorcontrib>Burov, Ekaterina</creatorcontrib><creatorcontrib>Salanne, Mathieu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serva, Alessandra</au><au>Guerault, Allan</au><au>Ishii, Yoshiki</au><au>Gouillart, Emmanuelle</au><au>Burov, Ekaterina</au><au>Salanne, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and dynamic properties of soda–lime–silica in the liquid phase</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-12-07</date><risdate>2020</risdate><volume>153</volume><issue>21</issue><spage>214505</spage><epage>214505</epage><pages>214505-214505</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Soda–lime–silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and diffusion properties of the system at temperatures ranging from 1400 K to 3000 K. We show that Na+ and Ca2+ ions adopt a different structural organization within the silica network, with Ca2+ ions having a greater affinity for non-bridging oxygens than Na+. We further link this structural behavior to their different diffusivities, suggesting that escaping from the first oxygen coordination shell is the limiting step for the diffusion. Na+ diffuses faster than Ca2+ because it is bonded to a smaller number of non-bridging oxygens. The formed ionic bonds are also less strong in the case of Na+.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0029702</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7525-2494</orcidid><orcidid>https://orcid.org/0000-0002-1753-491X</orcidid><orcidid>https://orcid.org/0000-0003-0102-9326</orcidid><orcidid>https://orcid.org/0000-0002-8601-0300</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-12, Vol.153 (21), p.214505-214505 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0029702 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | Bonding strength Calcium ions Chemical Physics Deformation effects Diffusion rate Lime Liquid phases Molecular dynamics Physics Properties (attributes) Silica glass Silicon dioxide Sodium |
title | Structural and dynamic properties of soda–lime–silica in the liquid phase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20dynamic%20properties%20of%20soda%E2%80%93lime%E2%80%93silica%20in%20the%20liquid%20phase&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Serva,%20Alessandra&rft.date=2020-12-07&rft.volume=153&rft.issue=21&rft.spage=214505&rft.epage=214505&rft.pages=214505-214505&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0029702&rft_dat=%3Cproquest_scita%3E2466096486%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-d080b4474e5c43fe1613b5246765995c7e7ce93638a2e91316fc36af44f584423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466096486&rft_id=info:pmid/&rfr_iscdi=true |