Loading…
The dynamics of electron holes in current sheets
We present 1.5D Vlasov code simulations of the dynamics of electron holes in non-uniform magnetic and electric fields typical of current sheets and, particularly, of the Earth's magnetotail current sheet. The simulations show that spatial width and amplitude of electron holes do not substantial...
Saved in:
Published in: | Physics of plasmas 2021-01, Vol.28 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 28 |
creator | Shustov, Pavel I. Kuzichev, Ilya V. Vasko, Ivan Y. Artemyev, Anton V. Gerrard, Andrew J. |
description | We present 1.5D Vlasov code simulations of the dynamics of electron holes in non-uniform magnetic and electric fields typical of current sheets and, particularly, of the Earth's magnetotail current sheet. The simulations show that spatial width and amplitude of electron holes do not substantially vary in the course of propagation, but there arises a double layer localized around the electron hole and manifested as a drop of the electrostatic potential along the electron hole. We demonstrate that electron holes produced around the neutral plane of a current sheet slow down in the course of propagation toward the current sheet boundaries. The leading contribution to electron hole braking is provided by the non-uniform magnetic field although electrostatic fields typical of the current sheets do provide a noticeable contribution. The simulations also show that electron holes with larger amplitudes are slowed faster. The simulation results suggest that some of the slow electron holes recently reported in the Earth's plasma sheet boundary layer may appear due to braking of initially fast electron holes in the course of propagation in the current sheet. |
doi_str_mv | 10.1063/5.0029999 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0029999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475593802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNd-7e5RiVSh4qeAtxNkJ3dJuapIV-u_d0qIHwbnMDDzMwEvINWcTzoy81xPGRD3UCRlxVtVFaUp1up9LVhij3s_JRUorxpgyuhoRtlgibXad27SQaPAU1wg5ho4uwxoTbTsKfYzYZZqWiDldkjPv1gmvjn1M3maPi-lzMX99epk-zAuQRuTCuQa9UKZxRhlQ4MxHzcEJyctGGK2hBC4cgvJSycohA1N74Yed1413Ro7JzeHuNobPHlO2q9DHbnhphSq1rmXFxKBuDwpiSCmit9vYblzcWc7sPhCr7TGQwd4dbII2u9yG7gd_hfgL7bbx_-G_l78BcJhuVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475593802</pqid></control><display><type>article</type><title>The dynamics of electron holes in current sheets</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Shustov, Pavel I. ; Kuzichev, Ilya V. ; Vasko, Ivan Y. ; Artemyev, Anton V. ; Gerrard, Andrew J.</creator><creatorcontrib>Shustov, Pavel I. ; Kuzichev, Ilya V. ; Vasko, Ivan Y. ; Artemyev, Anton V. ; Gerrard, Andrew J.</creatorcontrib><description>We present 1.5D Vlasov code simulations of the dynamics of electron holes in non-uniform magnetic and electric fields typical of current sheets and, particularly, of the Earth's magnetotail current sheet. The simulations show that spatial width and amplitude of electron holes do not substantially vary in the course of propagation, but there arises a double layer localized around the electron hole and manifested as a drop of the electrostatic potential along the electron hole. We demonstrate that electron holes produced around the neutral plane of a current sheet slow down in the course of propagation toward the current sheet boundaries. The leading contribution to electron hole braking is provided by the non-uniform magnetic field although electrostatic fields typical of the current sheets do provide a noticeable contribution. The simulations also show that electron holes with larger amplitudes are slowed faster. The simulation results suggest that some of the slow electron holes recently reported in the Earth's plasma sheet boundary layer may appear due to braking of initially fast electron holes in the course of propagation in the current sheet.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0029999</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplitudes ; Boundary layers ; Braking ; Current sheets ; Electric fields ; Electrons ; Holes (electron deficiencies) ; Nonuniform magnetic fields ; Plasma physics ; Propagation ; Simulation</subject><ispartof>Physics of plasmas, 2021-01, Vol.28 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63</citedby><cites>FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63</cites><orcidid>0000-0002-4974-4786 ; 0000-0002-7038-6784 ; 0000-0001-6815-1591 ; 0000-0002-9626-2085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0029999$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,779,781,792,27905,27906,76132</link.rule.ids></links><search><creatorcontrib>Shustov, Pavel I.</creatorcontrib><creatorcontrib>Kuzichev, Ilya V.</creatorcontrib><creatorcontrib>Vasko, Ivan Y.</creatorcontrib><creatorcontrib>Artemyev, Anton V.</creatorcontrib><creatorcontrib>Gerrard, Andrew J.</creatorcontrib><title>The dynamics of electron holes in current sheets</title><title>Physics of plasmas</title><description>We present 1.5D Vlasov code simulations of the dynamics of electron holes in non-uniform magnetic and electric fields typical of current sheets and, particularly, of the Earth's magnetotail current sheet. The simulations show that spatial width and amplitude of electron holes do not substantially vary in the course of propagation, but there arises a double layer localized around the electron hole and manifested as a drop of the electrostatic potential along the electron hole. We demonstrate that electron holes produced around the neutral plane of a current sheet slow down in the course of propagation toward the current sheet boundaries. The leading contribution to electron hole braking is provided by the non-uniform magnetic field although electrostatic fields typical of the current sheets do provide a noticeable contribution. The simulations also show that electron holes with larger amplitudes are slowed faster. The simulation results suggest that some of the slow electron holes recently reported in the Earth's plasma sheet boundary layer may appear due to braking of initially fast electron holes in the course of propagation in the current sheet.</description><subject>Amplitudes</subject><subject>Boundary layers</subject><subject>Braking</subject><subject>Current sheets</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Holes (electron deficiencies)</subject><subject>Nonuniform magnetic fields</subject><subject>Plasma physics</subject><subject>Propagation</subject><subject>Simulation</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNd-7e5RiVSh4qeAtxNkJ3dJuapIV-u_d0qIHwbnMDDzMwEvINWcTzoy81xPGRD3UCRlxVtVFaUp1up9LVhij3s_JRUorxpgyuhoRtlgibXad27SQaPAU1wg5ho4uwxoTbTsKfYzYZZqWiDldkjPv1gmvjn1M3maPi-lzMX99epk-zAuQRuTCuQa9UKZxRhlQ4MxHzcEJyctGGK2hBC4cgvJSycohA1N74Yed1413Ro7JzeHuNobPHlO2q9DHbnhphSq1rmXFxKBuDwpiSCmit9vYblzcWc7sPhCr7TGQwd4dbII2u9yG7gd_hfgL7bbx_-G_l78BcJhuVw</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Shustov, Pavel I.</creator><creator>Kuzichev, Ilya V.</creator><creator>Vasko, Ivan Y.</creator><creator>Artemyev, Anton V.</creator><creator>Gerrard, Andrew J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4974-4786</orcidid><orcidid>https://orcid.org/0000-0002-7038-6784</orcidid><orcidid>https://orcid.org/0000-0001-6815-1591</orcidid><orcidid>https://orcid.org/0000-0002-9626-2085</orcidid></search><sort><creationdate>202101</creationdate><title>The dynamics of electron holes in current sheets</title><author>Shustov, Pavel I. ; Kuzichev, Ilya V. ; Vasko, Ivan Y. ; Artemyev, Anton V. ; Gerrard, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Boundary layers</topic><topic>Braking</topic><topic>Current sheets</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Holes (electron deficiencies)</topic><topic>Nonuniform magnetic fields</topic><topic>Plasma physics</topic><topic>Propagation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shustov, Pavel I.</creatorcontrib><creatorcontrib>Kuzichev, Ilya V.</creatorcontrib><creatorcontrib>Vasko, Ivan Y.</creatorcontrib><creatorcontrib>Artemyev, Anton V.</creatorcontrib><creatorcontrib>Gerrard, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shustov, Pavel I.</au><au>Kuzichev, Ilya V.</au><au>Vasko, Ivan Y.</au><au>Artemyev, Anton V.</au><au>Gerrard, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamics of electron holes in current sheets</atitle><jtitle>Physics of plasmas</jtitle><date>2021-01</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>We present 1.5D Vlasov code simulations of the dynamics of electron holes in non-uniform magnetic and electric fields typical of current sheets and, particularly, of the Earth's magnetotail current sheet. The simulations show that spatial width and amplitude of electron holes do not substantially vary in the course of propagation, but there arises a double layer localized around the electron hole and manifested as a drop of the electrostatic potential along the electron hole. We demonstrate that electron holes produced around the neutral plane of a current sheet slow down in the course of propagation toward the current sheet boundaries. The leading contribution to electron hole braking is provided by the non-uniform magnetic field although electrostatic fields typical of the current sheets do provide a noticeable contribution. The simulations also show that electron holes with larger amplitudes are slowed faster. The simulation results suggest that some of the slow electron holes recently reported in the Earth's plasma sheet boundary layer may appear due to braking of initially fast electron holes in the course of propagation in the current sheet.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0029999</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4974-4786</orcidid><orcidid>https://orcid.org/0000-0002-7038-6784</orcidid><orcidid>https://orcid.org/0000-0001-6815-1591</orcidid><orcidid>https://orcid.org/0000-0002-9626-2085</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2021-01, Vol.28 (1) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0029999 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics |
subjects | Amplitudes Boundary layers Braking Current sheets Electric fields Electrons Holes (electron deficiencies) Nonuniform magnetic fields Plasma physics Propagation Simulation |
title | The dynamics of electron holes in current sheets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamics%20of%20electron%20holes%20in%20current%20sheets&rft.jtitle=Physics%20of%20plasmas&rft.au=Shustov,%20Pavel%20I.&rft.date=2021-01&rft.volume=28&rft.issue=1&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0029999&rft_dat=%3Cproquest_scita%3E2475593802%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475593802&rft_id=info:pmid/&rfr_iscdi=true |