Loading…

The dynamics of electron holes in current sheets

We present 1.5D Vlasov code simulations of the dynamics of electron holes in non-uniform magnetic and electric fields typical of current sheets and, particularly, of the Earth's magnetotail current sheet. The simulations show that spatial width and amplitude of electron holes do not substantial...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2021-01, Vol.28 (1)
Main Authors: Shustov, Pavel I., Kuzichev, Ilya V., Vasko, Ivan Y., Artemyev, Anton V., Gerrard, Andrew J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63
cites cdi_FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63
container_end_page
container_issue 1
container_start_page
container_title Physics of plasmas
container_volume 28
creator Shustov, Pavel I.
Kuzichev, Ilya V.
Vasko, Ivan Y.
Artemyev, Anton V.
Gerrard, Andrew J.
description We present 1.5D Vlasov code simulations of the dynamics of electron holes in non-uniform magnetic and electric fields typical of current sheets and, particularly, of the Earth's magnetotail current sheet. The simulations show that spatial width and amplitude of electron holes do not substantially vary in the course of propagation, but there arises a double layer localized around the electron hole and manifested as a drop of the electrostatic potential along the electron hole. We demonstrate that electron holes produced around the neutral plane of a current sheet slow down in the course of propagation toward the current sheet boundaries. The leading contribution to electron hole braking is provided by the non-uniform magnetic field although electrostatic fields typical of the current sheets do provide a noticeable contribution. The simulations also show that electron holes with larger amplitudes are slowed faster. The simulation results suggest that some of the slow electron holes recently reported in the Earth's plasma sheet boundary layer may appear due to braking of initially fast electron holes in the course of propagation in the current sheet.
doi_str_mv 10.1063/5.0029999
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0029999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475593802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNd-7e5RiVSh4qeAtxNkJ3dJuapIV-u_d0qIHwbnMDDzMwEvINWcTzoy81xPGRD3UCRlxVtVFaUp1up9LVhij3s_JRUorxpgyuhoRtlgibXad27SQaPAU1wg5ho4uwxoTbTsKfYzYZZqWiDldkjPv1gmvjn1M3maPi-lzMX99epk-zAuQRuTCuQa9UKZxRhlQ4MxHzcEJyctGGK2hBC4cgvJSycohA1N74Yed1413Ro7JzeHuNobPHlO2q9DHbnhphSq1rmXFxKBuDwpiSCmit9vYblzcWc7sPhCr7TGQwd4dbII2u9yG7gd_hfgL7bbx_-G_l78BcJhuVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475593802</pqid></control><display><type>article</type><title>The dynamics of electron holes in current sheets</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Shustov, Pavel I. ; Kuzichev, Ilya V. ; Vasko, Ivan Y. ; Artemyev, Anton V. ; Gerrard, Andrew J.</creator><creatorcontrib>Shustov, Pavel I. ; Kuzichev, Ilya V. ; Vasko, Ivan Y. ; Artemyev, Anton V. ; Gerrard, Andrew J.</creatorcontrib><description>We present 1.5D Vlasov code simulations of the dynamics of electron holes in non-uniform magnetic and electric fields typical of current sheets and, particularly, of the Earth's magnetotail current sheet. The simulations show that spatial width and amplitude of electron holes do not substantially vary in the course of propagation, but there arises a double layer localized around the electron hole and manifested as a drop of the electrostatic potential along the electron hole. We demonstrate that electron holes produced around the neutral plane of a current sheet slow down in the course of propagation toward the current sheet boundaries. The leading contribution to electron hole braking is provided by the non-uniform magnetic field although electrostatic fields typical of the current sheets do provide a noticeable contribution. The simulations also show that electron holes with larger amplitudes are slowed faster. The simulation results suggest that some of the slow electron holes recently reported in the Earth's plasma sheet boundary layer may appear due to braking of initially fast electron holes in the course of propagation in the current sheet.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0029999</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplitudes ; Boundary layers ; Braking ; Current sheets ; Electric fields ; Electrons ; Holes (electron deficiencies) ; Nonuniform magnetic fields ; Plasma physics ; Propagation ; Simulation</subject><ispartof>Physics of plasmas, 2021-01, Vol.28 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63</citedby><cites>FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63</cites><orcidid>0000-0002-4974-4786 ; 0000-0002-7038-6784 ; 0000-0001-6815-1591 ; 0000-0002-9626-2085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0029999$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,779,781,792,27905,27906,76132</link.rule.ids></links><search><creatorcontrib>Shustov, Pavel I.</creatorcontrib><creatorcontrib>Kuzichev, Ilya V.</creatorcontrib><creatorcontrib>Vasko, Ivan Y.</creatorcontrib><creatorcontrib>Artemyev, Anton V.</creatorcontrib><creatorcontrib>Gerrard, Andrew J.</creatorcontrib><title>The dynamics of electron holes in current sheets</title><title>Physics of plasmas</title><description>We present 1.5D Vlasov code simulations of the dynamics of electron holes in non-uniform magnetic and electric fields typical of current sheets and, particularly, of the Earth's magnetotail current sheet. The simulations show that spatial width and amplitude of electron holes do not substantially vary in the course of propagation, but there arises a double layer localized around the electron hole and manifested as a drop of the electrostatic potential along the electron hole. We demonstrate that electron holes produced around the neutral plane of a current sheet slow down in the course of propagation toward the current sheet boundaries. The leading contribution to electron hole braking is provided by the non-uniform magnetic field although electrostatic fields typical of the current sheets do provide a noticeable contribution. The simulations also show that electron holes with larger amplitudes are slowed faster. The simulation results suggest that some of the slow electron holes recently reported in the Earth's plasma sheet boundary layer may appear due to braking of initially fast electron holes in the course of propagation in the current sheet.</description><subject>Amplitudes</subject><subject>Boundary layers</subject><subject>Braking</subject><subject>Current sheets</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Holes (electron deficiencies)</subject><subject>Nonuniform magnetic fields</subject><subject>Plasma physics</subject><subject>Propagation</subject><subject>Simulation</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNd-7e5RiVSh4qeAtxNkJ3dJuapIV-u_d0qIHwbnMDDzMwEvINWcTzoy81xPGRD3UCRlxVtVFaUp1up9LVhij3s_JRUorxpgyuhoRtlgibXad27SQaPAU1wg5ho4uwxoTbTsKfYzYZZqWiDldkjPv1gmvjn1M3maPi-lzMX99epk-zAuQRuTCuQa9UKZxRhlQ4MxHzcEJyctGGK2hBC4cgvJSycohA1N74Yed1413Ro7JzeHuNobPHlO2q9DHbnhphSq1rmXFxKBuDwpiSCmit9vYblzcWc7sPhCr7TGQwd4dbII2u9yG7gd_hfgL7bbx_-G_l78BcJhuVw</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Shustov, Pavel I.</creator><creator>Kuzichev, Ilya V.</creator><creator>Vasko, Ivan Y.</creator><creator>Artemyev, Anton V.</creator><creator>Gerrard, Andrew J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4974-4786</orcidid><orcidid>https://orcid.org/0000-0002-7038-6784</orcidid><orcidid>https://orcid.org/0000-0001-6815-1591</orcidid><orcidid>https://orcid.org/0000-0002-9626-2085</orcidid></search><sort><creationdate>202101</creationdate><title>The dynamics of electron holes in current sheets</title><author>Shustov, Pavel I. ; Kuzichev, Ilya V. ; Vasko, Ivan Y. ; Artemyev, Anton V. ; Gerrard, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Boundary layers</topic><topic>Braking</topic><topic>Current sheets</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Holes (electron deficiencies)</topic><topic>Nonuniform magnetic fields</topic><topic>Plasma physics</topic><topic>Propagation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shustov, Pavel I.</creatorcontrib><creatorcontrib>Kuzichev, Ilya V.</creatorcontrib><creatorcontrib>Vasko, Ivan Y.</creatorcontrib><creatorcontrib>Artemyev, Anton V.</creatorcontrib><creatorcontrib>Gerrard, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shustov, Pavel I.</au><au>Kuzichev, Ilya V.</au><au>Vasko, Ivan Y.</au><au>Artemyev, Anton V.</au><au>Gerrard, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamics of electron holes in current sheets</atitle><jtitle>Physics of plasmas</jtitle><date>2021-01</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>We present 1.5D Vlasov code simulations of the dynamics of electron holes in non-uniform magnetic and electric fields typical of current sheets and, particularly, of the Earth's magnetotail current sheet. The simulations show that spatial width and amplitude of electron holes do not substantially vary in the course of propagation, but there arises a double layer localized around the electron hole and manifested as a drop of the electrostatic potential along the electron hole. We demonstrate that electron holes produced around the neutral plane of a current sheet slow down in the course of propagation toward the current sheet boundaries. The leading contribution to electron hole braking is provided by the non-uniform magnetic field although electrostatic fields typical of the current sheets do provide a noticeable contribution. The simulations also show that electron holes with larger amplitudes are slowed faster. The simulation results suggest that some of the slow electron holes recently reported in the Earth's plasma sheet boundary layer may appear due to braking of initially fast electron holes in the course of propagation in the current sheet.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0029999</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4974-4786</orcidid><orcidid>https://orcid.org/0000-0002-7038-6784</orcidid><orcidid>https://orcid.org/0000-0001-6815-1591</orcidid><orcidid>https://orcid.org/0000-0002-9626-2085</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2021-01, Vol.28 (1)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_5_0029999
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects Amplitudes
Boundary layers
Braking
Current sheets
Electric fields
Electrons
Holes (electron deficiencies)
Nonuniform magnetic fields
Plasma physics
Propagation
Simulation
title The dynamics of electron holes in current sheets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamics%20of%20electron%20holes%20in%20current%20sheets&rft.jtitle=Physics%20of%20plasmas&rft.au=Shustov,%20Pavel%20I.&rft.date=2021-01&rft.volume=28&rft.issue=1&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0029999&rft_dat=%3Cproquest_scita%3E2475593802%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-aadef246da646c4ca6b91ca2317d2655c7c12aec4f3438ae0c69f2fc4f19dfa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475593802&rft_id=info:pmid/&rfr_iscdi=true