Loading…
Efficient mm-wave photomodulation via coupled Fabry–Perot cavities
An efficient mm-wave photomodulator is designed based on coupled Fabry–Perot modes in a low-lifetime silicon wafer and an adjacent cavity formed from a transparent reflector, such as indium tin oxide. The modulation of a reflected beam using this coupled-cavity design is increased by a factor of 7 c...
Saved in:
Published in: | Journal of applied physics 2021-01, Vol.129 (3) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An efficient mm-wave photomodulator is designed based on coupled Fabry–Perot modes in a low-lifetime silicon wafer and an adjacent cavity formed from a transparent reflector, such as indium tin oxide. The modulation of a reflected beam using this coupled-cavity design is increased by a factor of 7 compared with that from an isolated silicon wafer, while also introducing a degree of tunability and maintaining low angular dispersion. For the particular design built and tested, a modulation of 32% is achieved for an extremely low optical illumination of just
0.006
W
/
cm
2 and with a maximum operation rate of more than 3 kHz. The large increase in modulation, coupled with the flexibility of the design and the fact that all components can be industrially manufactured, makes this photomodulator a promising candidate for many communication, imaging, and sensing applications. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0032506 |