Loading…
Optical microprism cavities based on dislocation-free GaN
Three-dimensional growth of nanostructures can be used to reduce the threading dislocation density that degrades III-nitride laser performance. Here, nanowire-based hexagonal GaN microprisms with flat top and bottom c-facets are embedded between two dielectric distributed Bragg reflectors to create...
Saved in:
Published in: | Applied physics letters 2020-12, Vol.117 (23) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-670dc1de7a8678e716bea1febfb0b559aa2e62b13513d725ef2ecb20fa6a6ca03 |
container_end_page | |
container_issue | 23 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 117 |
creator | Hjort, Filip Khalilian, Maryam Bengtsson, Jörgen Bengths, Marcus Gustavsson, Johan Gustafsson, Anders Samuelson, Lars Haglund, Åsa |
description | Three-dimensional growth of nanostructures can be used to reduce the threading dislocation density that degrades III-nitride laser performance. Here, nanowire-based hexagonal GaN microprisms with flat top and bottom c-facets are embedded between two dielectric distributed Bragg reflectors to create dislocation-free vertical optical cavities. The cavities are electron beam pumped, and the quality (Q) factor is deduced from the cavity-filtered yellow luminescence. The Q factor is ∼500 for a 1000 nm wide prism cavity and only ∼60 for a 600 nm wide cavity, showing the strong decrease in Q factor when diffraction losses become dominant. Measured Q factors are in good agreement with those obtained from quasi-3D finite element frequency-domain method and 3D beam propagation method simulations. Simulations further predict that a prism cavity with a 1000 nm width will have a Q factor of around 2000 in the blue spectral regime, which would be the target regime for real devices. These results demonstrate the potential of GaN prisms as a scalable platform for realizing small footprint lasers with low threshold currents. |
doi_str_mv | 10.1063/5.0032967 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0032967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468426934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-670dc1de7a8678e716bea1febfb0b559aa2e62b13513d725ef2ecb20fa6a6ca03</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhhtRcFw9-A8aPCn0mu90jrLoujC4B_VcVJIKm6Vnuk16Vvz3Zp1hPSx6KEKFh6eKt7ruNWfnnBn5Xp8zJoUz9km34czaQXI-Pu02rH0Pxmn-vHtR621rtZBy07nrZc0Bp36XQ5mXkuuuD3iX10y191gp9vO-j7lOc8A1z_shFaL-Er-87J4lnCq9Or1n3fdPH79dfB6215dXFx-2Q5DOroOxLAYeyeJo7EiWG0_IE_nkmdfaIQoywnOpuYxWaEqCghcsoUETkMmz7uvRW3_ScvDQdtxh-QUzZihUCUu4gXCD045KhUpgpBhV5ATWSw_K6gROKAEJXXTBxDTK2Kzbf1qnw9LKt7rXWe-1QaEAbbKgombgJRJ4o4QORFEib7o3R91S5h8Hqivczoeyb7mAUGZUwjipGvX2SLWoay2UHsZyBvfnAw2n8zX23WnBkNc_yT_Ad3P5C8IS0__gx-bfPJ2o3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468426934</pqid></control><display><type>article</type><title>Optical microprism cavities based on dislocation-free GaN</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Hjort, Filip ; Khalilian, Maryam ; Bengtsson, Jörgen ; Bengths, Marcus ; Gustavsson, Johan ; Gustafsson, Anders ; Samuelson, Lars ; Haglund, Åsa</creator><creatorcontrib>Hjort, Filip ; Khalilian, Maryam ; Bengtsson, Jörgen ; Bengths, Marcus ; Gustavsson, Johan ; Gustafsson, Anders ; Samuelson, Lars ; Haglund, Åsa</creatorcontrib><description>Three-dimensional growth of nanostructures can be used to reduce the threading dislocation density that degrades III-nitride laser performance. Here, nanowire-based hexagonal GaN microprisms with flat top and bottom c-facets are embedded between two dielectric distributed Bragg reflectors to create dislocation-free vertical optical cavities. The cavities are electron beam pumped, and the quality (Q) factor is deduced from the cavity-filtered yellow luminescence. The Q factor is ∼500 for a 1000 nm wide prism cavity and only ∼60 for a 600 nm wide cavity, showing the strong decrease in Q factor when diffraction losses become dominant. Measured Q factors are in good agreement with those obtained from quasi-3D finite element frequency-domain method and 3D beam propagation method simulations. Simulations further predict that a prism cavity with a 1000 nm width will have a Q factor of around 2000 in the blue spectral regime, which would be the target regime for real devices. These results demonstrate the potential of GaN prisms as a scalable platform for realizing small footprint lasers with low threshold currents.</description><identifier>ISSN: 0003-6951</identifier><identifier>ISSN: 1077-3118</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0032967</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atom and Molecular Physics and Optics ; Atom- och molekylfysik och optik ; Bragg reflectors ; Condensed Matter Physics ; Den kondenserade materiens fysik ; Dislocation density ; Electron beams ; Finite element method ; Fysik ; Gallium nitrides ; Holes ; Nanowires ; Natural Sciences ; Naturvetenskap ; Physical Sciences ; Prisms ; Q factors ; Threading dislocations ; Threshold currents</subject><ispartof>Applied physics letters, 2020-12, Vol.117 (23)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c397t-670dc1de7a8678e716bea1febfb0b559aa2e62b13513d725ef2ecb20fa6a6ca03</cites><orcidid>0000-0001-9289-5961 ; 0000-0001-6453-7120 ; 0000-0003-3694-3644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0032967$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://lup.lub.lu.se/record/7bb56a24-a7f7-4d50-b3ae-b6425ceed3a1$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/521647$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hjort, Filip</creatorcontrib><creatorcontrib>Khalilian, Maryam</creatorcontrib><creatorcontrib>Bengtsson, Jörgen</creatorcontrib><creatorcontrib>Bengths, Marcus</creatorcontrib><creatorcontrib>Gustavsson, Johan</creatorcontrib><creatorcontrib>Gustafsson, Anders</creatorcontrib><creatorcontrib>Samuelson, Lars</creatorcontrib><creatorcontrib>Haglund, Åsa</creatorcontrib><title>Optical microprism cavities based on dislocation-free GaN</title><title>Applied physics letters</title><description>Three-dimensional growth of nanostructures can be used to reduce the threading dislocation density that degrades III-nitride laser performance. Here, nanowire-based hexagonal GaN microprisms with flat top and bottom c-facets are embedded between two dielectric distributed Bragg reflectors to create dislocation-free vertical optical cavities. The cavities are electron beam pumped, and the quality (Q) factor is deduced from the cavity-filtered yellow luminescence. The Q factor is ∼500 for a 1000 nm wide prism cavity and only ∼60 for a 600 nm wide cavity, showing the strong decrease in Q factor when diffraction losses become dominant. Measured Q factors are in good agreement with those obtained from quasi-3D finite element frequency-domain method and 3D beam propagation method simulations. Simulations further predict that a prism cavity with a 1000 nm width will have a Q factor of around 2000 in the blue spectral regime, which would be the target regime for real devices. These results demonstrate the potential of GaN prisms as a scalable platform for realizing small footprint lasers with low threshold currents.</description><subject>Applied physics</subject><subject>Atom and Molecular Physics and Optics</subject><subject>Atom- och molekylfysik och optik</subject><subject>Bragg reflectors</subject><subject>Condensed Matter Physics</subject><subject>Den kondenserade materiens fysik</subject><subject>Dislocation density</subject><subject>Electron beams</subject><subject>Finite element method</subject><subject>Fysik</subject><subject>Gallium nitrides</subject><subject>Holes</subject><subject>Nanowires</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Physical Sciences</subject><subject>Prisms</subject><subject>Q factors</subject><subject>Threading dislocations</subject><subject>Threshold currents</subject><issn>0003-6951</issn><issn>1077-3118</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kU2LFDEQhhtRcFw9-A8aPCn0mu90jrLoujC4B_VcVJIKm6Vnuk16Vvz3Zp1hPSx6KEKFh6eKt7ruNWfnnBn5Xp8zJoUz9km34czaQXI-Pu02rH0Pxmn-vHtR621rtZBy07nrZc0Bp36XQ5mXkuuuD3iX10y191gp9vO-j7lOc8A1z_shFaL-Er-87J4lnCq9Or1n3fdPH79dfB6215dXFx-2Q5DOroOxLAYeyeJo7EiWG0_IE_nkmdfaIQoywnOpuYxWaEqCghcsoUETkMmz7uvRW3_ScvDQdtxh-QUzZihUCUu4gXCD045KhUpgpBhV5ATWSw_K6gROKAEJXXTBxDTK2Kzbf1qnw9LKt7rXWe-1QaEAbbKgombgJRJ4o4QORFEib7o3R91S5h8Hqivczoeyb7mAUGZUwjipGvX2SLWoay2UHsZyBvfnAw2n8zX23WnBkNc_yT_Ad3P5C8IS0__gx-bfPJ2o3Q</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Hjort, Filip</creator><creator>Khalilian, Maryam</creator><creator>Bengtsson, Jörgen</creator><creator>Bengths, Marcus</creator><creator>Gustavsson, Johan</creator><creator>Gustafsson, Anders</creator><creator>Samuelson, Lars</creator><creator>Haglund, Åsa</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>ABBSD</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0001-9289-5961</orcidid><orcidid>https://orcid.org/0000-0001-6453-7120</orcidid><orcidid>https://orcid.org/0000-0003-3694-3644</orcidid></search><sort><creationdate>20201207</creationdate><title>Optical microprism cavities based on dislocation-free GaN</title><author>Hjort, Filip ; Khalilian, Maryam ; Bengtsson, Jörgen ; Bengths, Marcus ; Gustavsson, Johan ; Gustafsson, Anders ; Samuelson, Lars ; Haglund, Åsa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-670dc1de7a8678e716bea1febfb0b559aa2e62b13513d725ef2ecb20fa6a6ca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Atom and Molecular Physics and Optics</topic><topic>Atom- och molekylfysik och optik</topic><topic>Bragg reflectors</topic><topic>Condensed Matter Physics</topic><topic>Den kondenserade materiens fysik</topic><topic>Dislocation density</topic><topic>Electron beams</topic><topic>Finite element method</topic><topic>Fysik</topic><topic>Gallium nitrides</topic><topic>Holes</topic><topic>Nanowires</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Physical Sciences</topic><topic>Prisms</topic><topic>Q factors</topic><topic>Threading dislocations</topic><topic>Threshold currents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hjort, Filip</creatorcontrib><creatorcontrib>Khalilian, Maryam</creatorcontrib><creatorcontrib>Bengtsson, Jörgen</creatorcontrib><creatorcontrib>Bengths, Marcus</creatorcontrib><creatorcontrib>Gustavsson, Johan</creatorcontrib><creatorcontrib>Gustafsson, Anders</creatorcontrib><creatorcontrib>Samuelson, Lars</creatorcontrib><creatorcontrib>Haglund, Åsa</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hjort, Filip</au><au>Khalilian, Maryam</au><au>Bengtsson, Jörgen</au><au>Bengths, Marcus</au><au>Gustavsson, Johan</au><au>Gustafsson, Anders</au><au>Samuelson, Lars</au><au>Haglund, Åsa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical microprism cavities based on dislocation-free GaN</atitle><jtitle>Applied physics letters</jtitle><date>2020-12-07</date><risdate>2020</risdate><volume>117</volume><issue>23</issue><issn>0003-6951</issn><issn>1077-3118</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Three-dimensional growth of nanostructures can be used to reduce the threading dislocation density that degrades III-nitride laser performance. Here, nanowire-based hexagonal GaN microprisms with flat top and bottom c-facets are embedded between two dielectric distributed Bragg reflectors to create dislocation-free vertical optical cavities. The cavities are electron beam pumped, and the quality (Q) factor is deduced from the cavity-filtered yellow luminescence. The Q factor is ∼500 for a 1000 nm wide prism cavity and only ∼60 for a 600 nm wide cavity, showing the strong decrease in Q factor when diffraction losses become dominant. Measured Q factors are in good agreement with those obtained from quasi-3D finite element frequency-domain method and 3D beam propagation method simulations. Simulations further predict that a prism cavity with a 1000 nm width will have a Q factor of around 2000 in the blue spectral regime, which would be the target regime for real devices. These results demonstrate the potential of GaN prisms as a scalable platform for realizing small footprint lasers with low threshold currents.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0032967</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9289-5961</orcidid><orcidid>https://orcid.org/0000-0001-6453-7120</orcidid><orcidid>https://orcid.org/0000-0003-3694-3644</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-12, Vol.117 (23) |
issn | 0003-6951 1077-3118 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0032967 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Applied physics Atom and Molecular Physics and Optics Atom- och molekylfysik och optik Bragg reflectors Condensed Matter Physics Den kondenserade materiens fysik Dislocation density Electron beams Finite element method Fysik Gallium nitrides Holes Nanowires Natural Sciences Naturvetenskap Physical Sciences Prisms Q factors Threading dislocations Threshold currents |
title | Optical microprism cavities based on dislocation-free GaN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20microprism%20cavities%20based%20on%20dislocation-free%20GaN&rft.jtitle=Applied%20physics%20letters&rft.au=Hjort,%20Filip&rft.date=2020-12-07&rft.volume=117&rft.issue=23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0032967&rft_dat=%3Cproquest_scita%3E2468426934%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-670dc1de7a8678e716bea1febfb0b559aa2e62b13513d725ef2ecb20fa6a6ca03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468426934&rft_id=info:pmid/&rfr_iscdi=true |