Loading…
Analysis of the kinetic energy functional in the generalized gradient approximation
A new density functional for the total kinetic energy in the generalized gradient approximation is developed through an enhancement factor that leads to the correct behavior in the limits when the reduced density gradient tends to 0 and to infinity and by making use of the conjoint conjecture for th...
Saved in:
Published in: | The Journal of chemical physics 2021-02, Vol.154 (8), p.084107-084107 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-e6a342383b1366aacfc974cf2a918ab5c7f6fb48b73c6e31f5da4a516cbb9c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-e6a342383b1366aacfc974cf2a918ab5c7f6fb48b73c6e31f5da4a516cbb9c73 |
container_end_page | 084107 |
container_issue | 8 |
container_start_page | 084107 |
container_title | The Journal of chemical physics |
container_volume | 154 |
creator | Francisco, Héctor I. Carmona-Espíndola, Javier Gázquez, José L. |
description | A new density functional for the total kinetic energy in the generalized gradient approximation is developed through an enhancement factor that leads to the correct behavior in the limits when the reduced density gradient tends to 0 and to infinity and by making use of the conjoint conjecture for the interpolation between these two limits, through the incorporation, in the intermediate region of constraints that are associated with the exchange energy functional. The resulting functional leads to a reasonable description of the kinetic energies of atoms and molecules when it is used in combination with Hartree–Fock densities. Additionally, in order to improve the behavior of the kinetic energy density, a new enhancement factor for the Pauli kinetic energy is proposed by incorporating the correct behavior into the limits when the reduced density gradient tends to 0 and to infinity, together with the positivity condition, and imposing through the interpolation function that the sum of its integral over the whole space and the Weiszacker energy must be equal to the value obtained with the enhancement factor developed for the total kinetic energy. |
doi_str_mv | 10.1063/5.0040973 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0040973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494876793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-e6a342383b1366aacfc974cf2a918ab5c7f6fb48b73c6e31f5da4a516cbb9c73</originalsourceid><addsrcrecordid>eNp90LtOwzAUBmALgaAUBl4AWWIBpBQ7dnwZq4qbVImB7pHt2MUlTYqdSJSnx73AwMB0hvPpPzo_ABcYjTBi5K4YIUSR5OQADDASMuNMokMwQCjHmWSInYDTGBcIIcxzegxOCGFEco4H4HXcqHodfYStg92bhe--sZ030DY2zNfQ9Y3pfJsQ9M0WzDcbVfsvW8F5UJW3TQfVahXaT79UG3sGjpyqoz3fzyGYPdzPJk_Z9OXxeTKeZoZQ0WWWKUJzIojGhDGljDOSU-NyJbFQujDcMaep0JwYZgl2RaWoKjAzWkvDyRBc72LT6Y_exq5c-mhsXavGtn0scyqp4IxLkujVH7po-5Ce2qqcklwgkdTNTpnQxhisK1chvRTWJUblpuiyKPdFJ3u5T-z10la_8qfZBG53IBrfbWv5J-0bxGiFsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492432808</pqid></control><display><type>article</type><title>Analysis of the kinetic energy functional in the generalized gradient approximation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Francisco, Héctor I. ; Carmona-Espíndola, Javier ; Gázquez, José L.</creator><creatorcontrib>Francisco, Héctor I. ; Carmona-Espíndola, Javier ; Gázquez, José L.</creatorcontrib><description>A new density functional for the total kinetic energy in the generalized gradient approximation is developed through an enhancement factor that leads to the correct behavior in the limits when the reduced density gradient tends to 0 and to infinity and by making use of the conjoint conjecture for the interpolation between these two limits, through the incorporation, in the intermediate region of constraints that are associated with the exchange energy functional. The resulting functional leads to a reasonable description of the kinetic energies of atoms and molecules when it is used in combination with Hartree–Fock densities. Additionally, in order to improve the behavior of the kinetic energy density, a new enhancement factor for the Pauli kinetic energy is proposed by incorporating the correct behavior into the limits when the reduced density gradient tends to 0 and to infinity, together with the positivity condition, and imposing through the interpolation function that the sum of its integral over the whole space and the Weiszacker energy must be equal to the value obtained with the enhancement factor developed for the total kinetic energy.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0040973</identifier><identifier>PMID: 33639771</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Approximation ; Energy ; Flux density ; Infinity ; Interpolation ; Kinetic energy ; Mathematical analysis</subject><ispartof>The Journal of chemical physics, 2021-02, Vol.154 (8), p.084107-084107</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-e6a342383b1366aacfc974cf2a918ab5c7f6fb48b73c6e31f5da4a516cbb9c73</citedby><cites>FETCH-LOGICAL-c348t-e6a342383b1366aacfc974cf2a918ab5c7f6fb48b73c6e31f5da4a516cbb9c73</cites><orcidid>0000-0001-6685-7080 ; 0000-0001-5723-9336 ; 0000-0001-6163-8436 ; 0000000157239336 ; 0000000161638436 ; 0000000166857080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0040973$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33639771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Francisco, Héctor I.</creatorcontrib><creatorcontrib>Carmona-Espíndola, Javier</creatorcontrib><creatorcontrib>Gázquez, José L.</creatorcontrib><title>Analysis of the kinetic energy functional in the generalized gradient approximation</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A new density functional for the total kinetic energy in the generalized gradient approximation is developed through an enhancement factor that leads to the correct behavior in the limits when the reduced density gradient tends to 0 and to infinity and by making use of the conjoint conjecture for the interpolation between these two limits, through the incorporation, in the intermediate region of constraints that are associated with the exchange energy functional. The resulting functional leads to a reasonable description of the kinetic energies of atoms and molecules when it is used in combination with Hartree–Fock densities. Additionally, in order to improve the behavior of the kinetic energy density, a new enhancement factor for the Pauli kinetic energy is proposed by incorporating the correct behavior into the limits when the reduced density gradient tends to 0 and to infinity, together with the positivity condition, and imposing through the interpolation function that the sum of its integral over the whole space and the Weiszacker energy must be equal to the value obtained with the enhancement factor developed for the total kinetic energy.</description><subject>Approximation</subject><subject>Energy</subject><subject>Flux density</subject><subject>Infinity</subject><subject>Interpolation</subject><subject>Kinetic energy</subject><subject>Mathematical analysis</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90LtOwzAUBmALgaAUBl4AWWIBpBQ7dnwZq4qbVImB7pHt2MUlTYqdSJSnx73AwMB0hvPpPzo_ABcYjTBi5K4YIUSR5OQADDASMuNMokMwQCjHmWSInYDTGBcIIcxzegxOCGFEco4H4HXcqHodfYStg92bhe--sZ030DY2zNfQ9Y3pfJsQ9M0WzDcbVfsvW8F5UJW3TQfVahXaT79UG3sGjpyqoz3fzyGYPdzPJk_Z9OXxeTKeZoZQ0WWWKUJzIojGhDGljDOSU-NyJbFQujDcMaep0JwYZgl2RaWoKjAzWkvDyRBc72LT6Y_exq5c-mhsXavGtn0scyqp4IxLkujVH7po-5Ce2qqcklwgkdTNTpnQxhisK1chvRTWJUblpuiyKPdFJ3u5T-z10la_8qfZBG53IBrfbWv5J-0bxGiFsw</recordid><startdate>20210228</startdate><enddate>20210228</enddate><creator>Francisco, Héctor I.</creator><creator>Carmona-Espíndola, Javier</creator><creator>Gázquez, José L.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6685-7080</orcidid><orcidid>https://orcid.org/0000-0001-5723-9336</orcidid><orcidid>https://orcid.org/0000-0001-6163-8436</orcidid><orcidid>https://orcid.org/0000000157239336</orcidid><orcidid>https://orcid.org/0000000161638436</orcidid><orcidid>https://orcid.org/0000000166857080</orcidid></search><sort><creationdate>20210228</creationdate><title>Analysis of the kinetic energy functional in the generalized gradient approximation</title><author>Francisco, Héctor I. ; Carmona-Espíndola, Javier ; Gázquez, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-e6a342383b1366aacfc974cf2a918ab5c7f6fb48b73c6e31f5da4a516cbb9c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Energy</topic><topic>Flux density</topic><topic>Infinity</topic><topic>Interpolation</topic><topic>Kinetic energy</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francisco, Héctor I.</creatorcontrib><creatorcontrib>Carmona-Espíndola, Javier</creatorcontrib><creatorcontrib>Gázquez, José L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francisco, Héctor I.</au><au>Carmona-Espíndola, Javier</au><au>Gázquez, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the kinetic energy functional in the generalized gradient approximation</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-02-28</date><risdate>2021</risdate><volume>154</volume><issue>8</issue><spage>084107</spage><epage>084107</epage><pages>084107-084107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A new density functional for the total kinetic energy in the generalized gradient approximation is developed through an enhancement factor that leads to the correct behavior in the limits when the reduced density gradient tends to 0 and to infinity and by making use of the conjoint conjecture for the interpolation between these two limits, through the incorporation, in the intermediate region of constraints that are associated with the exchange energy functional. The resulting functional leads to a reasonable description of the kinetic energies of atoms and molecules when it is used in combination with Hartree–Fock densities. Additionally, in order to improve the behavior of the kinetic energy density, a new enhancement factor for the Pauli kinetic energy is proposed by incorporating the correct behavior into the limits when the reduced density gradient tends to 0 and to infinity, together with the positivity condition, and imposing through the interpolation function that the sum of its integral over the whole space and the Weiszacker energy must be equal to the value obtained with the enhancement factor developed for the total kinetic energy.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33639771</pmid><doi>10.1063/5.0040973</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6685-7080</orcidid><orcidid>https://orcid.org/0000-0001-5723-9336</orcidid><orcidid>https://orcid.org/0000-0001-6163-8436</orcidid><orcidid>https://orcid.org/0000000157239336</orcidid><orcidid>https://orcid.org/0000000161638436</orcidid><orcidid>https://orcid.org/0000000166857080</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-02, Vol.154 (8), p.084107-084107 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0040973 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Approximation Energy Flux density Infinity Interpolation Kinetic energy Mathematical analysis |
title | Analysis of the kinetic energy functional in the generalized gradient approximation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20kinetic%20energy%20functional%20in%20the%20generalized%20gradient%20approximation&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Francisco,%20H%C3%A9ctor%20I.&rft.date=2021-02-28&rft.volume=154&rft.issue=8&rft.spage=084107&rft.epage=084107&rft.pages=084107-084107&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0040973&rft_dat=%3Cproquest_scita%3E2494876793%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-e6a342383b1366aacfc974cf2a918ab5c7f6fb48b73c6e31f5da4a516cbb9c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492432808&rft_id=info:pmid/33639771&rfr_iscdi=true |