Loading…
Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak
An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion tempera...
Saved in:
Published in: | Review of scientific instruments 2021-05, Vol.92 (5), p.053513-053513 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543 |
container_end_page | 053513 |
container_issue | 5 |
container_start_page | 053513 |
container_title | Review of scientific instruments |
container_volume | 92 |
creator | Truong, D. D. McKee, G. R. Yan, Z. Jaehnig, K. Winz, G. R. Fonck, R. J. Geiger, B. |
description | An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion temperature and parallel velocity fluctuations down to x̃x∼1% (x = Ti, v∥) and up to ∼450 kHz have been measured in a variety of plasmas. The multi-field nature of the CHERS technique also allows measurements of the cross-phase angles of the fluctuating fields. UF-CHERS is optimized to observe emissions from the electron exchange reaction between intrinsic C6+ and hydrogenic neutral beam injected particles near 529 nm. UF-CHERS consists of two chords separated by ∼1 cm radially, less than the turbulence correlation length in DIII-D plasmas, which enables correlated measurements to suppress incoherent electronic and photon noise. The optical components of the spectrometer include a volume-phase-holographic grating with >90% transmission between 528 and 530 nm and f/2 200-mm lenses, selected to maximize the optical efficiency and photon flux. Diffracted light from each chord is collected in eight spectral bins, each with a bandwidth of ∼0.25 nm, and detected and amplified by chilled avalanche photodiodes and custom high-gain, wide bandwidth low-noise preamplifiers to achieve the optimal signal-to-noise ratio. The resulting signals are digitized at 1 MHz, 103–104× faster than the conventional CHERS diagnostics. Spatial coverage is achieved by repositioning a motorized fiber tray between plasmas. UF-CHERS measurements will advance the understanding of turbulent ion transport and contribute to the validation of transport models and simulations. |
doi_str_mv | 10.1063/5.0043095 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0043095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522224281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543</originalsourceid><addsrcrecordid>eNqd0ctu1TAQAFALgcSlsOAPLNi0SCl-xI8s0W1LI1VCArq2HGfCTZvYwXYK_Qz-GJdUQmLJbDySj-3xDEKvKTmlRPL34pSQmpNGPEE7SnRTKcn4U7QjhNeVVLV-jl6kdENKCEp36FcbPM4wLxBtXiNg63scQ7Z5LBvDtLq8bvkMNhUwg88J_xjzAa9TjrYabMrYHWz8Bhh-lsSXJIILczf67WhawOUYkgvLPT6-vqj2l-efv5zgsTx9AHzWtm11hnO4tbO9fYmeDXZK8OpxPULXF-df95fV1aeP7f7DVeW4VrnSnWh0o5lQUoAi3BLnZCOta3o22JJLYFRZgOIo6yjtu36wEjR0veWi5kfozXZvSHk0yY0Z3MEF70uthipNtVIFHW9oieH7CimbeUwOpsl6CGsyTAjCpBKMFfr2H3oT1ujLF4piJWqmaVEnm3KlHynCYJY4zjbeG0rMwwSNMI8TLPbdZh-K-9PJ_8N3If6FZukH_hv5q6qu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522224281</pqid></control><display><type>article</type><title>Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Truong, D. D. ; McKee, G. R. ; Yan, Z. ; Jaehnig, K. ; Winz, G. R. ; Fonck, R. J. ; Geiger, B.</creator><creatorcontrib>Truong, D. D. ; McKee, G. R. ; Yan, Z. ; Jaehnig, K. ; Winz, G. R. ; Fonck, R. J. ; Geiger, B.</creatorcontrib><description>An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion temperature and parallel velocity fluctuations down to x̃x∼1% (x = Ti, v∥) and up to ∼450 kHz have been measured in a variety of plasmas. The multi-field nature of the CHERS technique also allows measurements of the cross-phase angles of the fluctuating fields. UF-CHERS is optimized to observe emissions from the electron exchange reaction between intrinsic C6+ and hydrogenic neutral beam injected particles near 529 nm. UF-CHERS consists of two chords separated by ∼1 cm radially, less than the turbulence correlation length in DIII-D plasmas, which enables correlated measurements to suppress incoherent electronic and photon noise. The optical components of the spectrometer include a volume-phase-holographic grating with >90% transmission between 528 and 530 nm and f/2 200-mm lenses, selected to maximize the optical efficiency and photon flux. Diffracted light from each chord is collected in eight spectral bins, each with a bandwidth of ∼0.25 nm, and detected and amplified by chilled avalanche photodiodes and custom high-gain, wide bandwidth low-noise preamplifiers to achieve the optimal signal-to-noise ratio. The resulting signals are digitized at 1 MHz, 103–104× faster than the conventional CHERS diagnostics. Spatial coverage is achieved by repositioning a motorized fiber tray between plasmas. UF-CHERS measurements will advance the understanding of turbulent ion transport and contribute to the validation of transport models and simulations.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0043095</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplification ; Avalanche diodes ; Bandwidths ; Broadband ; Charge exchange ; High gain ; Ion recombination ; Ion temperature ; Ion transport ; Light diffraction ; Neutral beams ; Noise ; Optical components ; Photodiodes ; Photons ; Plasmas (physics) ; Preamplifiers ; Scientific apparatus & instruments ; Signal to noise ratio ; Spectrum analysis ; Turbulence</subject><ispartof>Review of scientific instruments, 2021-05, Vol.92 (5), p.053513-053513</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543</citedby><cites>FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543</cites><orcidid>0000-0001-7762-7184 ; 0000-0002-9438-6762 ; 0000-0002-2754-9816 ; 0000-0002-8573-2539 ; 0000000177627184 ; 0000000294386762 ; 0000000285732539 ; 0000000227549816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0043095$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,778,780,782,793,883,27911,27912,76138</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1781877$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Truong, D. D.</creatorcontrib><creatorcontrib>McKee, G. R.</creatorcontrib><creatorcontrib>Yan, Z.</creatorcontrib><creatorcontrib>Jaehnig, K.</creatorcontrib><creatorcontrib>Winz, G. R.</creatorcontrib><creatorcontrib>Fonck, R. J.</creatorcontrib><creatorcontrib>Geiger, B.</creatorcontrib><title>Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak</title><title>Review of scientific instruments</title><description>An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion temperature and parallel velocity fluctuations down to x̃x∼1% (x = Ti, v∥) and up to ∼450 kHz have been measured in a variety of plasmas. The multi-field nature of the CHERS technique also allows measurements of the cross-phase angles of the fluctuating fields. UF-CHERS is optimized to observe emissions from the electron exchange reaction between intrinsic C6+ and hydrogenic neutral beam injected particles near 529 nm. UF-CHERS consists of two chords separated by ∼1 cm radially, less than the turbulence correlation length in DIII-D plasmas, which enables correlated measurements to suppress incoherent electronic and photon noise. The optical components of the spectrometer include a volume-phase-holographic grating with >90% transmission between 528 and 530 nm and f/2 200-mm lenses, selected to maximize the optical efficiency and photon flux. Diffracted light from each chord is collected in eight spectral bins, each with a bandwidth of ∼0.25 nm, and detected and amplified by chilled avalanche photodiodes and custom high-gain, wide bandwidth low-noise preamplifiers to achieve the optimal signal-to-noise ratio. The resulting signals are digitized at 1 MHz, 103–104× faster than the conventional CHERS diagnostics. Spatial coverage is achieved by repositioning a motorized fiber tray between plasmas. UF-CHERS measurements will advance the understanding of turbulent ion transport and contribute to the validation of transport models and simulations.</description><subject>Amplification</subject><subject>Avalanche diodes</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Charge exchange</subject><subject>High gain</subject><subject>Ion recombination</subject><subject>Ion temperature</subject><subject>Ion transport</subject><subject>Light diffraction</subject><subject>Neutral beams</subject><subject>Noise</subject><subject>Optical components</subject><subject>Photodiodes</subject><subject>Photons</subject><subject>Plasmas (physics)</subject><subject>Preamplifiers</subject><subject>Scientific apparatus & instruments</subject><subject>Signal to noise ratio</subject><subject>Spectrum analysis</subject><subject>Turbulence</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0ctu1TAQAFALgcSlsOAPLNi0SCl-xI8s0W1LI1VCArq2HGfCTZvYwXYK_Qz-GJdUQmLJbDySj-3xDEKvKTmlRPL34pSQmpNGPEE7SnRTKcn4U7QjhNeVVLV-jl6kdENKCEp36FcbPM4wLxBtXiNg63scQ7Z5LBvDtLq8bvkMNhUwg88J_xjzAa9TjrYabMrYHWz8Bhh-lsSXJIILczf67WhawOUYkgvLPT6-vqj2l-efv5zgsTx9AHzWtm11hnO4tbO9fYmeDXZK8OpxPULXF-df95fV1aeP7f7DVeW4VrnSnWh0o5lQUoAi3BLnZCOta3o22JJLYFRZgOIo6yjtu36wEjR0veWi5kfozXZvSHk0yY0Z3MEF70uthipNtVIFHW9oieH7CimbeUwOpsl6CGsyTAjCpBKMFfr2H3oT1ujLF4piJWqmaVEnm3KlHynCYJY4zjbeG0rMwwSNMI8TLPbdZh-K-9PJ_8N3If6FZukH_hv5q6qu</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Truong, D. D.</creator><creator>McKee, G. R.</creator><creator>Yan, Z.</creator><creator>Jaehnig, K.</creator><creator>Winz, G. R.</creator><creator>Fonck, R. J.</creator><creator>Geiger, B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7762-7184</orcidid><orcidid>https://orcid.org/0000-0002-9438-6762</orcidid><orcidid>https://orcid.org/0000-0002-2754-9816</orcidid><orcidid>https://orcid.org/0000-0002-8573-2539</orcidid><orcidid>https://orcid.org/0000000177627184</orcidid><orcidid>https://orcid.org/0000000294386762</orcidid><orcidid>https://orcid.org/0000000285732539</orcidid><orcidid>https://orcid.org/0000000227549816</orcidid></search><sort><creationdate>20210501</creationdate><title>Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak</title><author>Truong, D. D. ; McKee, G. R. ; Yan, Z. ; Jaehnig, K. ; Winz, G. R. ; Fonck, R. J. ; Geiger, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplification</topic><topic>Avalanche diodes</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Charge exchange</topic><topic>High gain</topic><topic>Ion recombination</topic><topic>Ion temperature</topic><topic>Ion transport</topic><topic>Light diffraction</topic><topic>Neutral beams</topic><topic>Noise</topic><topic>Optical components</topic><topic>Photodiodes</topic><topic>Photons</topic><topic>Plasmas (physics)</topic><topic>Preamplifiers</topic><topic>Scientific apparatus & instruments</topic><topic>Signal to noise ratio</topic><topic>Spectrum analysis</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truong, D. D.</creatorcontrib><creatorcontrib>McKee, G. R.</creatorcontrib><creatorcontrib>Yan, Z.</creatorcontrib><creatorcontrib>Jaehnig, K.</creatorcontrib><creatorcontrib>Winz, G. R.</creatorcontrib><creatorcontrib>Fonck, R. J.</creatorcontrib><creatorcontrib>Geiger, B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truong, D. D.</au><au>McKee, G. R.</au><au>Yan, Z.</au><au>Jaehnig, K.</au><au>Winz, G. R.</au><au>Fonck, R. J.</au><au>Geiger, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak</atitle><jtitle>Review of scientific instruments</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>92</volume><issue>5</issue><spage>053513</spage><epage>053513</epage><pages>053513-053513</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion temperature and parallel velocity fluctuations down to x̃x∼1% (x = Ti, v∥) and up to ∼450 kHz have been measured in a variety of plasmas. The multi-field nature of the CHERS technique also allows measurements of the cross-phase angles of the fluctuating fields. UF-CHERS is optimized to observe emissions from the electron exchange reaction between intrinsic C6+ and hydrogenic neutral beam injected particles near 529 nm. UF-CHERS consists of two chords separated by ∼1 cm radially, less than the turbulence correlation length in DIII-D plasmas, which enables correlated measurements to suppress incoherent electronic and photon noise. The optical components of the spectrometer include a volume-phase-holographic grating with >90% transmission between 528 and 530 nm and f/2 200-mm lenses, selected to maximize the optical efficiency and photon flux. Diffracted light from each chord is collected in eight spectral bins, each with a bandwidth of ∼0.25 nm, and detected and amplified by chilled avalanche photodiodes and custom high-gain, wide bandwidth low-noise preamplifiers to achieve the optimal signal-to-noise ratio. The resulting signals are digitized at 1 MHz, 103–104× faster than the conventional CHERS diagnostics. Spatial coverage is achieved by repositioning a motorized fiber tray between plasmas. UF-CHERS measurements will advance the understanding of turbulent ion transport and contribute to the validation of transport models and simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0043095</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7762-7184</orcidid><orcidid>https://orcid.org/0000-0002-9438-6762</orcidid><orcidid>https://orcid.org/0000-0002-2754-9816</orcidid><orcidid>https://orcid.org/0000-0002-8573-2539</orcidid><orcidid>https://orcid.org/0000000177627184</orcidid><orcidid>https://orcid.org/0000000294386762</orcidid><orcidid>https://orcid.org/0000000285732539</orcidid><orcidid>https://orcid.org/0000000227549816</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2021-05, Vol.92 (5), p.053513-053513 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0043095 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Amplification Avalanche diodes Bandwidths Broadband Charge exchange High gain Ion recombination Ion temperature Ion transport Light diffraction Neutral beams Noise Optical components Photodiodes Photons Plasmas (physics) Preamplifiers Scientific apparatus & instruments Signal to noise ratio Spectrum analysis Turbulence |
title | Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20temperature%20and%20rotation%20fluctuation%20measurements%20with%20ultra-fast%20charge%20exchange%20recombination%20spectroscopy%20(UF-CHERS)%20in%20the%20DIII-D%20tokamak&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Truong,%20D.%20D.&rft.date=2021-05-01&rft.volume=92&rft.issue=5&rft.spage=053513&rft.epage=053513&rft.pages=053513-053513&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0043095&rft_dat=%3Cproquest_scita%3E2522224281%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522224281&rft_id=info:pmid/&rfr_iscdi=true |