Loading…

Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak

An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion tempera...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2021-05, Vol.92 (5), p.053513-053513
Main Authors: Truong, D. D., McKee, G. R., Yan, Z., Jaehnig, K., Winz, G. R., Fonck, R. J., Geiger, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543
cites cdi_FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543
container_end_page 053513
container_issue 5
container_start_page 053513
container_title Review of scientific instruments
container_volume 92
creator Truong, D. D.
McKee, G. R.
Yan, Z.
Jaehnig, K.
Winz, G. R.
Fonck, R. J.
Geiger, B.
description An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion temperature and parallel velocity fluctuations down to x̃x∼1% (x = Ti, v∥) and up to ∼450 kHz have been measured in a variety of plasmas. The multi-field nature of the CHERS technique also allows measurements of the cross-phase angles of the fluctuating fields. UF-CHERS is optimized to observe emissions from the electron exchange reaction between intrinsic C6+ and hydrogenic neutral beam injected particles near 529 nm. UF-CHERS consists of two chords separated by ∼1 cm radially, less than the turbulence correlation length in DIII-D plasmas, which enables correlated measurements to suppress incoherent electronic and photon noise. The optical components of the spectrometer include a volume-phase-holographic grating with >90% transmission between 528 and 530 nm and f/2 200-mm lenses, selected to maximize the optical efficiency and photon flux. Diffracted light from each chord is collected in eight spectral bins, each with a bandwidth of ∼0.25 nm, and detected and amplified by chilled avalanche photodiodes and custom high-gain, wide bandwidth low-noise preamplifiers to achieve the optimal signal-to-noise ratio. The resulting signals are digitized at 1 MHz, 103–104× faster than the conventional CHERS diagnostics. Spatial coverage is achieved by repositioning a motorized fiber tray between plasmas. UF-CHERS measurements will advance the understanding of turbulent ion transport and contribute to the validation of transport models and simulations.
doi_str_mv 10.1063/5.0043095
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0043095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522224281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543</originalsourceid><addsrcrecordid>eNqd0ctu1TAQAFALgcSlsOAPLNi0SCl-xI8s0W1LI1VCArq2HGfCTZvYwXYK_Qz-GJdUQmLJbDySj-3xDEKvKTmlRPL34pSQmpNGPEE7SnRTKcn4U7QjhNeVVLV-jl6kdENKCEp36FcbPM4wLxBtXiNg63scQ7Z5LBvDtLq8bvkMNhUwg88J_xjzAa9TjrYabMrYHWz8Bhh-lsSXJIILczf67WhawOUYkgvLPT6-vqj2l-efv5zgsTx9AHzWtm11hnO4tbO9fYmeDXZK8OpxPULXF-df95fV1aeP7f7DVeW4VrnSnWh0o5lQUoAi3BLnZCOta3o22JJLYFRZgOIo6yjtu36wEjR0veWi5kfozXZvSHk0yY0Z3MEF70uthipNtVIFHW9oieH7CimbeUwOpsl6CGsyTAjCpBKMFfr2H3oT1ujLF4piJWqmaVEnm3KlHynCYJY4zjbeG0rMwwSNMI8TLPbdZh-K-9PJ_8N3If6FZukH_hv5q6qu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522224281</pqid></control><display><type>article</type><title>Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Truong, D. D. ; McKee, G. R. ; Yan, Z. ; Jaehnig, K. ; Winz, G. R. ; Fonck, R. J. ; Geiger, B.</creator><creatorcontrib>Truong, D. D. ; McKee, G. R. ; Yan, Z. ; Jaehnig, K. ; Winz, G. R. ; Fonck, R. J. ; Geiger, B.</creatorcontrib><description>An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion temperature and parallel velocity fluctuations down to x̃x∼1% (x = Ti, v∥) and up to ∼450 kHz have been measured in a variety of plasmas. The multi-field nature of the CHERS technique also allows measurements of the cross-phase angles of the fluctuating fields. UF-CHERS is optimized to observe emissions from the electron exchange reaction between intrinsic C6+ and hydrogenic neutral beam injected particles near 529 nm. UF-CHERS consists of two chords separated by ∼1 cm radially, less than the turbulence correlation length in DIII-D plasmas, which enables correlated measurements to suppress incoherent electronic and photon noise. The optical components of the spectrometer include a volume-phase-holographic grating with &gt;90% transmission between 528 and 530 nm and f/2 200-mm lenses, selected to maximize the optical efficiency and photon flux. Diffracted light from each chord is collected in eight spectral bins, each with a bandwidth of ∼0.25 nm, and detected and amplified by chilled avalanche photodiodes and custom high-gain, wide bandwidth low-noise preamplifiers to achieve the optimal signal-to-noise ratio. The resulting signals are digitized at 1 MHz, 103–104× faster than the conventional CHERS diagnostics. Spatial coverage is achieved by repositioning a motorized fiber tray between plasmas. UF-CHERS measurements will advance the understanding of turbulent ion transport and contribute to the validation of transport models and simulations.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0043095</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplification ; Avalanche diodes ; Bandwidths ; Broadband ; Charge exchange ; High gain ; Ion recombination ; Ion temperature ; Ion transport ; Light diffraction ; Neutral beams ; Noise ; Optical components ; Photodiodes ; Photons ; Plasmas (physics) ; Preamplifiers ; Scientific apparatus &amp; instruments ; Signal to noise ratio ; Spectrum analysis ; Turbulence</subject><ispartof>Review of scientific instruments, 2021-05, Vol.92 (5), p.053513-053513</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543</citedby><cites>FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543</cites><orcidid>0000-0001-7762-7184 ; 0000-0002-9438-6762 ; 0000-0002-2754-9816 ; 0000-0002-8573-2539 ; 0000000177627184 ; 0000000294386762 ; 0000000285732539 ; 0000000227549816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0043095$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,778,780,782,793,883,27911,27912,76138</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1781877$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Truong, D. D.</creatorcontrib><creatorcontrib>McKee, G. R.</creatorcontrib><creatorcontrib>Yan, Z.</creatorcontrib><creatorcontrib>Jaehnig, K.</creatorcontrib><creatorcontrib>Winz, G. R.</creatorcontrib><creatorcontrib>Fonck, R. J.</creatorcontrib><creatorcontrib>Geiger, B.</creatorcontrib><title>Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak</title><title>Review of scientific instruments</title><description>An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion temperature and parallel velocity fluctuations down to x̃x∼1% (x = Ti, v∥) and up to ∼450 kHz have been measured in a variety of plasmas. The multi-field nature of the CHERS technique also allows measurements of the cross-phase angles of the fluctuating fields. UF-CHERS is optimized to observe emissions from the electron exchange reaction between intrinsic C6+ and hydrogenic neutral beam injected particles near 529 nm. UF-CHERS consists of two chords separated by ∼1 cm radially, less than the turbulence correlation length in DIII-D plasmas, which enables correlated measurements to suppress incoherent electronic and photon noise. The optical components of the spectrometer include a volume-phase-holographic grating with &gt;90% transmission between 528 and 530 nm and f/2 200-mm lenses, selected to maximize the optical efficiency and photon flux. Diffracted light from each chord is collected in eight spectral bins, each with a bandwidth of ∼0.25 nm, and detected and amplified by chilled avalanche photodiodes and custom high-gain, wide bandwidth low-noise preamplifiers to achieve the optimal signal-to-noise ratio. The resulting signals are digitized at 1 MHz, 103–104× faster than the conventional CHERS diagnostics. Spatial coverage is achieved by repositioning a motorized fiber tray between plasmas. UF-CHERS measurements will advance the understanding of turbulent ion transport and contribute to the validation of transport models and simulations.</description><subject>Amplification</subject><subject>Avalanche diodes</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Charge exchange</subject><subject>High gain</subject><subject>Ion recombination</subject><subject>Ion temperature</subject><subject>Ion transport</subject><subject>Light diffraction</subject><subject>Neutral beams</subject><subject>Noise</subject><subject>Optical components</subject><subject>Photodiodes</subject><subject>Photons</subject><subject>Plasmas (physics)</subject><subject>Preamplifiers</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Signal to noise ratio</subject><subject>Spectrum analysis</subject><subject>Turbulence</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0ctu1TAQAFALgcSlsOAPLNi0SCl-xI8s0W1LI1VCArq2HGfCTZvYwXYK_Qz-GJdUQmLJbDySj-3xDEKvKTmlRPL34pSQmpNGPEE7SnRTKcn4U7QjhNeVVLV-jl6kdENKCEp36FcbPM4wLxBtXiNg63scQ7Z5LBvDtLq8bvkMNhUwg88J_xjzAa9TjrYabMrYHWz8Bhh-lsSXJIILczf67WhawOUYkgvLPT6-vqj2l-efv5zgsTx9AHzWtm11hnO4tbO9fYmeDXZK8OpxPULXF-df95fV1aeP7f7DVeW4VrnSnWh0o5lQUoAi3BLnZCOta3o22JJLYFRZgOIo6yjtu36wEjR0veWi5kfozXZvSHk0yY0Z3MEF70uthipNtVIFHW9oieH7CimbeUwOpsl6CGsyTAjCpBKMFfr2H3oT1ujLF4piJWqmaVEnm3KlHynCYJY4zjbeG0rMwwSNMI8TLPbdZh-K-9PJ_8N3If6FZukH_hv5q6qu</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Truong, D. D.</creator><creator>McKee, G. R.</creator><creator>Yan, Z.</creator><creator>Jaehnig, K.</creator><creator>Winz, G. R.</creator><creator>Fonck, R. J.</creator><creator>Geiger, B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7762-7184</orcidid><orcidid>https://orcid.org/0000-0002-9438-6762</orcidid><orcidid>https://orcid.org/0000-0002-2754-9816</orcidid><orcidid>https://orcid.org/0000-0002-8573-2539</orcidid><orcidid>https://orcid.org/0000000177627184</orcidid><orcidid>https://orcid.org/0000000294386762</orcidid><orcidid>https://orcid.org/0000000285732539</orcidid><orcidid>https://orcid.org/0000000227549816</orcidid></search><sort><creationdate>20210501</creationdate><title>Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak</title><author>Truong, D. D. ; McKee, G. R. ; Yan, Z. ; Jaehnig, K. ; Winz, G. R. ; Fonck, R. J. ; Geiger, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplification</topic><topic>Avalanche diodes</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Charge exchange</topic><topic>High gain</topic><topic>Ion recombination</topic><topic>Ion temperature</topic><topic>Ion transport</topic><topic>Light diffraction</topic><topic>Neutral beams</topic><topic>Noise</topic><topic>Optical components</topic><topic>Photodiodes</topic><topic>Photons</topic><topic>Plasmas (physics)</topic><topic>Preamplifiers</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Signal to noise ratio</topic><topic>Spectrum analysis</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truong, D. D.</creatorcontrib><creatorcontrib>McKee, G. R.</creatorcontrib><creatorcontrib>Yan, Z.</creatorcontrib><creatorcontrib>Jaehnig, K.</creatorcontrib><creatorcontrib>Winz, G. R.</creatorcontrib><creatorcontrib>Fonck, R. J.</creatorcontrib><creatorcontrib>Geiger, B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truong, D. D.</au><au>McKee, G. R.</au><au>Yan, Z.</au><au>Jaehnig, K.</au><au>Winz, G. R.</au><au>Fonck, R. J.</au><au>Geiger, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak</atitle><jtitle>Review of scientific instruments</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>92</volume><issue>5</issue><spage>053513</spage><epage>053513</epage><pages>053513-053513</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion temperature and parallel velocity fluctuations down to x̃x∼1% (x = Ti, v∥) and up to ∼450 kHz have been measured in a variety of plasmas. The multi-field nature of the CHERS technique also allows measurements of the cross-phase angles of the fluctuating fields. UF-CHERS is optimized to observe emissions from the electron exchange reaction between intrinsic C6+ and hydrogenic neutral beam injected particles near 529 nm. UF-CHERS consists of two chords separated by ∼1 cm radially, less than the turbulence correlation length in DIII-D plasmas, which enables correlated measurements to suppress incoherent electronic and photon noise. The optical components of the spectrometer include a volume-phase-holographic grating with &gt;90% transmission between 528 and 530 nm and f/2 200-mm lenses, selected to maximize the optical efficiency and photon flux. Diffracted light from each chord is collected in eight spectral bins, each with a bandwidth of ∼0.25 nm, and detected and amplified by chilled avalanche photodiodes and custom high-gain, wide bandwidth low-noise preamplifiers to achieve the optimal signal-to-noise ratio. The resulting signals are digitized at 1 MHz, 103–104× faster than the conventional CHERS diagnostics. Spatial coverage is achieved by repositioning a motorized fiber tray between plasmas. UF-CHERS measurements will advance the understanding of turbulent ion transport and contribute to the validation of transport models and simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0043095</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7762-7184</orcidid><orcidid>https://orcid.org/0000-0002-9438-6762</orcidid><orcidid>https://orcid.org/0000-0002-2754-9816</orcidid><orcidid>https://orcid.org/0000-0002-8573-2539</orcidid><orcidid>https://orcid.org/0000000177627184</orcidid><orcidid>https://orcid.org/0000000294386762</orcidid><orcidid>https://orcid.org/0000000285732539</orcidid><orcidid>https://orcid.org/0000000227549816</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2021-05, Vol.92 (5), p.053513-053513
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_5_0043095
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Amplification
Avalanche diodes
Bandwidths
Broadband
Charge exchange
High gain
Ion recombination
Ion temperature
Ion transport
Light diffraction
Neutral beams
Noise
Optical components
Photodiodes
Photons
Plasmas (physics)
Preamplifiers
Scientific apparatus & instruments
Signal to noise ratio
Spectrum analysis
Turbulence
title Ion temperature and rotation fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (UF-CHERS) in the DIII-D tokamak
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20temperature%20and%20rotation%20fluctuation%20measurements%20with%20ultra-fast%20charge%20exchange%20recombination%20spectroscopy%20(UF-CHERS)%20in%20the%20DIII-D%20tokamak&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Truong,%20D.%20D.&rft.date=2021-05-01&rft.volume=92&rft.issue=5&rft.spage=053513&rft.epage=053513&rft.pages=053513-053513&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0043095&rft_dat=%3Cproquest_scita%3E2522224281%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-8b5989825765e703a0cc696ac9d2facc66e217aeeb5912b11dbdfa6e8ebda3543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522224281&rft_id=info:pmid/&rfr_iscdi=true