Loading…

Tunable van der Waals interactions in low-dimensional nanostructures

Non-covalent van der Waals interactions play a major role at the nanoscale, and even a slight change in their asymptotic decay could produce a major impact on surface phenomena, self-assembly of nanomaterials, and biological systems. By a full many-body description of vdW interactions in coupled car...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2021-06, Vol.154 (22), p.224105-224105
Main Authors: Ambrosetti, Alberto, Subashchandrabose, S., Liu, B., Silvestrelli, Pier Luigi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-covalent van der Waals interactions play a major role at the nanoscale, and even a slight change in their asymptotic decay could produce a major impact on surface phenomena, self-assembly of nanomaterials, and biological systems. By a full many-body description of vdW interactions in coupled carbyne-like chains and graphenic structures, here, we demonstrate that both modulus and a range of interfragment forces can be effectively tuned, introducing mechanical strain and doping (or polarizability change). This result contrasts with conventional pairwise vdW predictions, where the two-body approximation essentially fixes the asymptotic decay of interfragment forces. The present results provide viable pathways for detailed experimental control of nanoscale systems that could be exploited both in static geometrical configurations and in dynamical processes.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0051235