Loading…

Computational fluid dynamics modelling of a hydrokinetic turbine

Hydrokinetic turbine is usually used to convert the kinetic energy from flowing fluid into electricity. It is a useful tool for converting renewable energy sources from hydropower application. Performance of the turbine is very much depending on the fluid dynamics of flow around the turbine. Computa...

Full description

Saved in:
Bibliographic Details
Main Authors: Hew, W. R., Saat, F. A. Z. Mohd, Irfan, A. R., Mattokit, E., Rosli, M. A. M., Anuar, F. Shikh, Herawan, S. G., Syahputra, S. I. A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2347
creator Hew, W. R.
Saat, F. A. Z. Mohd
Irfan, A. R.
Mattokit, E.
Rosli, M. A. M.
Anuar, F. Shikh
Herawan, S. G.
Syahputra, S. I. A.
description Hydrokinetic turbine is usually used to convert the kinetic energy from flowing fluid into electricity. It is a useful tool for converting renewable energy sources from hydropower application. Performance of the turbine is very much depending on the fluid dynamics of flow around the turbine. Computational fluid dynamics modelling is one of the methods for fluid dynamics investigation but finding the best models to be used to solve for dynamic change of flow around turbine is difficult. Models should be solved with guidance from real life data (experimental) and finding perfect match between flow physics, numerical methods and experimentally measured data is always challenging leading to difficulty in many design processes. In this paper, a computational fluid dynamics (CFD) model investigation was done based on published experimental work. A hydrokinetic water turbine was drawn using the MHKF1-180 and NACA4418 foils dimensions. The models were solved using Turbo mode in the commercial software of ANSYS CFX. Two commonly used Reynolds-Average-Navier-Stokes (RANS) models were solved; the k-model and the SST k-model. The results show that the SST k-model is a more suitable model for the hydrokinetic turbine as investigated in this paper. The finding reported in this paper helps future modelling effort so that accurate predictions of fluid dynamics across hydrokinetic turbine could be achieved.
doi_str_mv 10.1063/5.0051477
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0051477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553602599</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-e8340ca321a0badb8c1da82cd2aec6e38d2ced3e240fbb0502c4943a06cba13d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMouK4e_AcBb0LXN59tb8riqrDgRcFbSJNUs7ZNTVqh_97KLnjzNHN4GGYGoUsCKwKS3YgVgCA8z4_QgghBslwSeYwWACXPKGdvp-gspR0ALfO8WKDbdWj7cdCDD51ucN2M3mI7dbr1JuE2WNc0vnvHocYaf0w2hk_fucEbPIyxmu05Oql1k9zFQZfodXP_sn7Mts8PT-u7bdYTWQyZKxgHoxklGiptq8IQqwtqLNXOSMcKS42zzFEOdVWBAGp4yZkGaSpNmGVLdLXP7WP4Gl0a1C6Mce6cFBWCSaCiLGfqek8l4_ejVB99q-OkCKjfh5RQh4f-g79D_ANVb2v2A6pWZ8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2553602599</pqid></control><display><type>conference_proceeding</type><title>Computational fluid dynamics modelling of a hydrokinetic turbine</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hew, W. R. ; Saat, F. A. Z. Mohd ; Irfan, A. R. ; Mattokit, E. ; Rosli, M. A. M. ; Anuar, F. Shikh ; Herawan, S. G. ; Syahputra, S. I. A.</creator><contributor>Razak, Rafiza Abd ; Tahir, Muhammad Faheem Mohd ; Mortar, Nurul Aida Mohd ; Jamaludin, Liyana ; Abdullah, Mohd Mustafa Al Bakri ; Rahim, Shayfull Zamree Abd</contributor><creatorcontrib>Hew, W. R. ; Saat, F. A. Z. Mohd ; Irfan, A. R. ; Mattokit, E. ; Rosli, M. A. M. ; Anuar, F. Shikh ; Herawan, S. G. ; Syahputra, S. I. A. ; Razak, Rafiza Abd ; Tahir, Muhammad Faheem Mohd ; Mortar, Nurul Aida Mohd ; Jamaludin, Liyana ; Abdullah, Mohd Mustafa Al Bakri ; Rahim, Shayfull Zamree Abd</creatorcontrib><description>Hydrokinetic turbine is usually used to convert the kinetic energy from flowing fluid into electricity. It is a useful tool for converting renewable energy sources from hydropower application. Performance of the turbine is very much depending on the fluid dynamics of flow around the turbine. Computational fluid dynamics modelling is one of the methods for fluid dynamics investigation but finding the best models to be used to solve for dynamic change of flow around turbine is difficult. Models should be solved with guidance from real life data (experimental) and finding perfect match between flow physics, numerical methods and experimentally measured data is always challenging leading to difficulty in many design processes. In this paper, a computational fluid dynamics (CFD) model investigation was done based on published experimental work. A hydrokinetic water turbine was drawn using the MHKF1-180 and NACA4418 foils dimensions. The models were solved using Turbo mode in the commercial software of ANSYS CFX. Two commonly used Reynolds-Average-Navier-Stokes (RANS) models were solved; the k-model and the SST k-model. The results show that the SST k-model is a more suitable model for the hydrokinetic turbine as investigated in this paper. The finding reported in this paper helps future modelling effort so that accurate predictions of fluid dynamics across hydrokinetic turbine could be achieved.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0051477</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Fluid dynamics ; Foils ; Hydraulic turbines ; Kinetic energy ; Mathematical models ; Numerical methods ; Renewable energy sources ; Turbines</subject><ispartof>AIP conference proceedings, 2021, Vol.2347 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids></links><search><contributor>Razak, Rafiza Abd</contributor><contributor>Tahir, Muhammad Faheem Mohd</contributor><contributor>Mortar, Nurul Aida Mohd</contributor><contributor>Jamaludin, Liyana</contributor><contributor>Abdullah, Mohd Mustafa Al Bakri</contributor><contributor>Rahim, Shayfull Zamree Abd</contributor><creatorcontrib>Hew, W. R.</creatorcontrib><creatorcontrib>Saat, F. A. Z. Mohd</creatorcontrib><creatorcontrib>Irfan, A. R.</creatorcontrib><creatorcontrib>Mattokit, E.</creatorcontrib><creatorcontrib>Rosli, M. A. M.</creatorcontrib><creatorcontrib>Anuar, F. Shikh</creatorcontrib><creatorcontrib>Herawan, S. G.</creatorcontrib><creatorcontrib>Syahputra, S. I. A.</creatorcontrib><title>Computational fluid dynamics modelling of a hydrokinetic turbine</title><title>AIP conference proceedings</title><description>Hydrokinetic turbine is usually used to convert the kinetic energy from flowing fluid into electricity. It is a useful tool for converting renewable energy sources from hydropower application. Performance of the turbine is very much depending on the fluid dynamics of flow around the turbine. Computational fluid dynamics modelling is one of the methods for fluid dynamics investigation but finding the best models to be used to solve for dynamic change of flow around turbine is difficult. Models should be solved with guidance from real life data (experimental) and finding perfect match between flow physics, numerical methods and experimentally measured data is always challenging leading to difficulty in many design processes. In this paper, a computational fluid dynamics (CFD) model investigation was done based on published experimental work. A hydrokinetic water turbine was drawn using the MHKF1-180 and NACA4418 foils dimensions. The models were solved using Turbo mode in the commercial software of ANSYS CFX. Two commonly used Reynolds-Average-Navier-Stokes (RANS) models were solved; the k-model and the SST k-model. The results show that the SST k-model is a more suitable model for the hydrokinetic turbine as investigated in this paper. The finding reported in this paper helps future modelling effort so that accurate predictions of fluid dynamics across hydrokinetic turbine could be achieved.</description><subject>Computational fluid dynamics</subject><subject>Fluid dynamics</subject><subject>Foils</subject><subject>Hydraulic turbines</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Renewable energy sources</subject><subject>Turbines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LxDAYhIMouK4e_AcBb0LXN59tb8riqrDgRcFbSJNUs7ZNTVqh_97KLnjzNHN4GGYGoUsCKwKS3YgVgCA8z4_QgghBslwSeYwWACXPKGdvp-gspR0ALfO8WKDbdWj7cdCDD51ucN2M3mI7dbr1JuE2WNc0vnvHocYaf0w2hk_fucEbPIyxmu05Oql1k9zFQZfodXP_sn7Mts8PT-u7bdYTWQyZKxgHoxklGiptq8IQqwtqLNXOSMcKS42zzFEOdVWBAGp4yZkGaSpNmGVLdLXP7WP4Gl0a1C6Mce6cFBWCSaCiLGfqek8l4_ejVB99q-OkCKjfh5RQh4f-g79D_ANVb2v2A6pWZ8o</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Hew, W. R.</creator><creator>Saat, F. A. Z. Mohd</creator><creator>Irfan, A. R.</creator><creator>Mattokit, E.</creator><creator>Rosli, M. A. M.</creator><creator>Anuar, F. Shikh</creator><creator>Herawan, S. G.</creator><creator>Syahputra, S. I. A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210721</creationdate><title>Computational fluid dynamics modelling of a hydrokinetic turbine</title><author>Hew, W. R. ; Saat, F. A. Z. Mohd ; Irfan, A. R. ; Mattokit, E. ; Rosli, M. A. M. ; Anuar, F. Shikh ; Herawan, S. G. ; Syahputra, S. I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-e8340ca321a0badb8c1da82cd2aec6e38d2ced3e240fbb0502c4943a06cba13d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Fluid dynamics</topic><topic>Foils</topic><topic>Hydraulic turbines</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Renewable energy sources</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hew, W. R.</creatorcontrib><creatorcontrib>Saat, F. A. Z. Mohd</creatorcontrib><creatorcontrib>Irfan, A. R.</creatorcontrib><creatorcontrib>Mattokit, E.</creatorcontrib><creatorcontrib>Rosli, M. A. M.</creatorcontrib><creatorcontrib>Anuar, F. Shikh</creatorcontrib><creatorcontrib>Herawan, S. G.</creatorcontrib><creatorcontrib>Syahputra, S. I. A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hew, W. R.</au><au>Saat, F. A. Z. Mohd</au><au>Irfan, A. R.</au><au>Mattokit, E.</au><au>Rosli, M. A. M.</au><au>Anuar, F. Shikh</au><au>Herawan, S. G.</au><au>Syahputra, S. I. A.</au><au>Razak, Rafiza Abd</au><au>Tahir, Muhammad Faheem Mohd</au><au>Mortar, Nurul Aida Mohd</au><au>Jamaludin, Liyana</au><au>Abdullah, Mohd Mustafa Al Bakri</au><au>Rahim, Shayfull Zamree Abd</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational fluid dynamics modelling of a hydrokinetic turbine</atitle><btitle>AIP conference proceedings</btitle><date>2021-07-21</date><risdate>2021</risdate><volume>2347</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Hydrokinetic turbine is usually used to convert the kinetic energy from flowing fluid into electricity. It is a useful tool for converting renewable energy sources from hydropower application. Performance of the turbine is very much depending on the fluid dynamics of flow around the turbine. Computational fluid dynamics modelling is one of the methods for fluid dynamics investigation but finding the best models to be used to solve for dynamic change of flow around turbine is difficult. Models should be solved with guidance from real life data (experimental) and finding perfect match between flow physics, numerical methods and experimentally measured data is always challenging leading to difficulty in many design processes. In this paper, a computational fluid dynamics (CFD) model investigation was done based on published experimental work. A hydrokinetic water turbine was drawn using the MHKF1-180 and NACA4418 foils dimensions. The models were solved using Turbo mode in the commercial software of ANSYS CFX. Two commonly used Reynolds-Average-Navier-Stokes (RANS) models were solved; the k-model and the SST k-model. The results show that the SST k-model is a more suitable model for the hydrokinetic turbine as investigated in this paper. The finding reported in this paper helps future modelling effort so that accurate predictions of fluid dynamics across hydrokinetic turbine could be achieved.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0051477</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2347 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0051477
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Computational fluid dynamics
Fluid dynamics
Foils
Hydraulic turbines
Kinetic energy
Mathematical models
Numerical methods
Renewable energy sources
Turbines
title Computational fluid dynamics modelling of a hydrokinetic turbine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20fluid%20dynamics%20modelling%20of%20a%20hydrokinetic%20turbine&rft.btitle=AIP%20conference%20proceedings&rft.au=Hew,%20W.%20R.&rft.date=2021-07-21&rft.volume=2347&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0051477&rft_dat=%3Cproquest_scita%3E2553602599%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p168t-e8340ca321a0badb8c1da82cd2aec6e38d2ced3e240fbb0502c4943a06cba13d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2553602599&rft_id=info:pmid/&rfr_iscdi=true