Loading…
Field-free spin–orbit torque driven multi-state reversal in wedged Ta/MgO/CoFeB/MgO heterostructures
We report a current-induced four-state magnetization reversal under zero magnetic field in a wedged Ta/MgO/CoFeB/MgO heterostructure with a perpendicular magnetic anisotropy. Anomalous Hall effect and magneto-optical Kerr effect microscopy measurements were performed to demonstrate that the field-fr...
Saved in:
Published in: | APL materials 2021-07, Vol.9 (7), p.071108-071108-5 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report a current-induced four-state magnetization reversal under zero magnetic field in a wedged Ta/MgO/CoFeB/MgO heterostructure with a perpendicular magnetic anisotropy. Anomalous Hall effect and magneto-optical Kerr effect microscopy measurements were performed to demonstrate that the field-free multi-level reversal is jointly determined by the spin–orbit torque effective field that originates from the lack of the lateral inversion symmetry in the wedged stacking structure and the current-induced Oersted field. Moreover, the creation of robust intermediate Hall resistance states in the multi-state switching strongly depends on the current-induced Joule heating. Our results provide a route for the field-free multi-level state reversal, which is significant for fabricating the non-volatile and energy-efficient multi-level memories or artificial neuron devices. |
---|---|
ISSN: | 2166-532X 2166-532X |
DOI: | 10.1063/5.0053896 |