Loading…

Solving the Schrödinger equation using program synthesis

We demonstrate that a program synthesis approach based on a linear code representation can be used to generate algorithms that approximate the ground-state solutions of one-dimensional time-independent Schrödinger equations constructed with bound polynomial potential energy surfaces (PESs). Here, an...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2021-10, Vol.155 (15), p.154102-154102
Main Author: Habershon, Scott
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-a40355e3e4c0853049ea3bc238e70682ccda4596de672f9da622955f041587e63
cites cdi_FETCH-LOGICAL-c395t-a40355e3e4c0853049ea3bc238e70682ccda4596de672f9da622955f041587e63
container_end_page 154102
container_issue 15
container_start_page 154102
container_title The Journal of chemical physics
container_volume 155
creator Habershon, Scott
description We demonstrate that a program synthesis approach based on a linear code representation can be used to generate algorithms that approximate the ground-state solutions of one-dimensional time-independent Schrödinger equations constructed with bound polynomial potential energy surfaces (PESs). Here, an algorithm is constructed as a linear series of instructions operating on a set of input vectors, matrices, and constants that define the problem characteristics, such as the PES. Discrete optimization is performed using simulated annealing in order to identify sequences of code-lines, operating on the program inputs that can reproduce the expected ground-state wavefunctions ψ(x) for a set of target PESs. The outcome of this optimization is not simply a mathematical function approximating ψ(x) but is, instead, a complete algorithm that converts the input vectors describing the system into a ground-state solution of the Schrödinger equation. These initial results point the way toward an alternative route for developing novel algorithms for quantum chemistry applications.
doi_str_mv 10.1063/5.0062497
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0062497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584782505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a40355e3e4c0853049ea3bc238e70682ccda4596de672f9da622955f041587e63</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcYcKPC1JP7ZCnFGxRcVNchZjLtlOmkTWYKfTFfwBcztQXBpavD4Xwcfn6ELjGMMAh6x0cAgjAlj9AAQ6FyKRQcowEAwbkSIE7RWYwLAMCSsAFSU99s6naWdXOXTe08fH2WaXUhc-vedLVvsz7u7qvgZ8Ess7htE411PEcnlWmiuzjMIXp_fHgbP-eT16eX8f0kt1TxLjcMKOeOOmah4BSYcoZ-WEILJ0EUxNrSMK5E6YQklSqNIERxXgHDvJBO0CG63v9NCda9i51e1tG6pjGt833UhBdMFoQDT_TqD134PrQp3U4RIjABmtTNXtngYwyu0qtQL03Yagx6V6Lm-lBisrd7G23d_dTxP7zx4RfqVVnRb1nOfrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582261203</pqid></control><display><type>article</type><title>Solving the Schrödinger equation using program synthesis</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Habershon, Scott</creator><creatorcontrib>Habershon, Scott</creatorcontrib><description>We demonstrate that a program synthesis approach based on a linear code representation can be used to generate algorithms that approximate the ground-state solutions of one-dimensional time-independent Schrödinger equations constructed with bound polynomial potential energy surfaces (PESs). Here, an algorithm is constructed as a linear series of instructions operating on a set of input vectors, matrices, and constants that define the problem characteristics, such as the PES. Discrete optimization is performed using simulated annealing in order to identify sequences of code-lines, operating on the program inputs that can reproduce the expected ground-state wavefunctions ψ(x) for a set of target PESs. The outcome of this optimization is not simply a mathematical function approximating ψ(x) but is, instead, a complete algorithm that converts the input vectors describing the system into a ground-state solution of the Schrödinger equation. These initial results point the way toward an alternative route for developing novel algorithms for quantum chemistry applications.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0062497</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Mathematical analysis ; Mathematical functions ; Optimization ; Polynomials ; Potential energy ; Quantum chemistry ; Schrodinger equation ; Sequences ; Simulated annealing ; Synthesis ; Vectors (mathematics) ; Wave functions</subject><ispartof>The Journal of chemical physics, 2021-10, Vol.155 (15), p.154102-154102</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a40355e3e4c0853049ea3bc238e70682ccda4596de672f9da622955f041587e63</citedby><cites>FETCH-LOGICAL-c395t-a40355e3e4c0853049ea3bc238e70682ccda4596de672f9da622955f041587e63</cites><orcidid>0000-0001-5932-6011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0062497$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Habershon, Scott</creatorcontrib><title>Solving the Schrödinger equation using program synthesis</title><title>The Journal of chemical physics</title><description>We demonstrate that a program synthesis approach based on a linear code representation can be used to generate algorithms that approximate the ground-state solutions of one-dimensional time-independent Schrödinger equations constructed with bound polynomial potential energy surfaces (PESs). Here, an algorithm is constructed as a linear series of instructions operating on a set of input vectors, matrices, and constants that define the problem characteristics, such as the PES. Discrete optimization is performed using simulated annealing in order to identify sequences of code-lines, operating on the program inputs that can reproduce the expected ground-state wavefunctions ψ(x) for a set of target PESs. The outcome of this optimization is not simply a mathematical function approximating ψ(x) but is, instead, a complete algorithm that converts the input vectors describing the system into a ground-state solution of the Schrödinger equation. These initial results point the way toward an alternative route for developing novel algorithms for quantum chemistry applications.</description><subject>Algorithms</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Potential energy</subject><subject>Quantum chemistry</subject><subject>Schrodinger equation</subject><subject>Sequences</subject><subject>Simulated annealing</subject><subject>Synthesis</subject><subject>Vectors (mathematics)</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcYcKPC1JP7ZCnFGxRcVNchZjLtlOmkTWYKfTFfwBcztQXBpavD4Xwcfn6ELjGMMAh6x0cAgjAlj9AAQ6FyKRQcowEAwbkSIE7RWYwLAMCSsAFSU99s6naWdXOXTe08fH2WaXUhc-vedLVvsz7u7qvgZ8Ess7htE411PEcnlWmiuzjMIXp_fHgbP-eT16eX8f0kt1TxLjcMKOeOOmah4BSYcoZ-WEILJ0EUxNrSMK5E6YQklSqNIERxXgHDvJBO0CG63v9NCda9i51e1tG6pjGt833UhBdMFoQDT_TqD134PrQp3U4RIjABmtTNXtngYwyu0qtQL03Yagx6V6Lm-lBisrd7G23d_dTxP7zx4RfqVVnRb1nOfrw</recordid><startdate>20211021</startdate><enddate>20211021</enddate><creator>Habershon, Scott</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5932-6011</orcidid></search><sort><creationdate>20211021</creationdate><title>Solving the Schrödinger equation using program synthesis</title><author>Habershon, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a40355e3e4c0853049ea3bc238e70682ccda4596de672f9da622955f041587e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Potential energy</topic><topic>Quantum chemistry</topic><topic>Schrodinger equation</topic><topic>Sequences</topic><topic>Simulated annealing</topic><topic>Synthesis</topic><topic>Vectors (mathematics)</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habershon, Scott</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habershon, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the Schrödinger equation using program synthesis</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-10-21</date><risdate>2021</risdate><volume>155</volume><issue>15</issue><spage>154102</spage><epage>154102</epage><pages>154102-154102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We demonstrate that a program synthesis approach based on a linear code representation can be used to generate algorithms that approximate the ground-state solutions of one-dimensional time-independent Schrödinger equations constructed with bound polynomial potential energy surfaces (PESs). Here, an algorithm is constructed as a linear series of instructions operating on a set of input vectors, matrices, and constants that define the problem characteristics, such as the PES. Discrete optimization is performed using simulated annealing in order to identify sequences of code-lines, operating on the program inputs that can reproduce the expected ground-state wavefunctions ψ(x) for a set of target PESs. The outcome of this optimization is not simply a mathematical function approximating ψ(x) but is, instead, a complete algorithm that converts the input vectors describing the system into a ground-state solution of the Schrödinger equation. These initial results point the way toward an alternative route for developing novel algorithms for quantum chemistry applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0062497</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5932-6011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-10, Vol.155 (15), p.154102-154102
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0062497
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Mathematical analysis
Mathematical functions
Optimization
Polynomials
Potential energy
Quantum chemistry
Schrodinger equation
Sequences
Simulated annealing
Synthesis
Vectors (mathematics)
Wave functions
title Solving the Schrödinger equation using program synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20Schr%C3%B6dinger%20equation%20using%20program%20synthesis&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Habershon,%20Scott&rft.date=2021-10-21&rft.volume=155&rft.issue=15&rft.spage=154102&rft.epage=154102&rft.pages=154102-154102&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0062497&rft_dat=%3Cproquest_scita%3E2584782505%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-a40355e3e4c0853049ea3bc238e70682ccda4596de672f9da622955f041587e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582261203&rft_id=info:pmid/&rfr_iscdi=true