Loading…

A biometric based medical information system for the identification of comorbidity in Covid-19 patients

Medical information System provides the best way to collect patient’s medical information. It helps the doctors to retrieve the patient’s previous medical history very faster and able to provide suitable treatment quickly. To keep medical information of a patient securely is a difficult task. Many M...

Full description

Saved in:
Bibliographic Details
Main Authors: Kumaresan, V., Punitha, K., Ragupathy, S., Shan, B. Priestly, Gunasekaran, T.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2387
creator Kumaresan, V.
Punitha, K.
Ragupathy, S.
Shan, B. Priestly
Gunasekaran, T.
description Medical information System provides the best way to collect patient’s medical information. It helps the doctors to retrieve the patient’s previous medical history very faster and able to provide suitable treatment quickly. To keep medical information of a patient securely is a difficult task. Many MQTT algorithms have been developed to provide security for the patients information. The sensitive medical information of a patient can also be protected by using biometric technology. Internet of Thing (IoT) technology used to send the medical information to the doctor like blood group, BP value, cholesterol level and heart rate level. The proposed system helps to provide the comorbidity details of the Covid-19 infected patient’s to doctors mobile phone. It also takes the current health details of the patients like temperature, respiratory rate and heart beat rate. By considering the past and present medical data of the Covid-19 patients , this system recommends the type of treatment to be given for Covid-19 infected patients.
doi_str_mv 10.1063/5.0068693
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0068693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590630562</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2033-db77b35ec16bfd1c339698fcc78ae0ab090d4f57080367e3691fac3fb75dd4e33</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZsTTabZHMsxS8oeFHwFvKpKd1mTdJC_73RFrx5CkyemWFeAK4xmmHEyB2dIcR6JsgJmGBKccMZZqdggpDomrYj7-fgIucVQq3gvJ-AjznUIQ6upGCgVtlZODgbjFrDsPExDaqEuIF5n4sbYC3A8ulgsG5Tgq_s9zd6aOIQkw42lH1thIu4C7bBAo5VVJsvwZlX6-yuju8UvD3cvy6emuXL4_NivmzGFhHSWM25JtQZzLS32BAimOi9MbxXDimNBLKdpxz1iDDuCBPYK0O85tTazhEyBTeHuWOKX1uXi1zFbdrUlbKloiaEKGuruj2obEL5vUGOKQwq7SVG8idISeUxyP_wLqY_KEfryTcD_HTp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2590630562</pqid></control><display><type>conference_proceeding</type><title>A biometric based medical information system for the identification of comorbidity in Covid-19 patients</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kumaresan, V. ; Punitha, K. ; Ragupathy, S. ; Shan, B. Priestly ; Gunasekaran, T.</creator><contributor>Sengottian, Mothil ; Joshy, Arun ; Subramaniam, Shivaswamy Muthugounder ; Venkatachalam, Chitra Devi ; Ravichandran, Sathish Raam</contributor><creatorcontrib>Kumaresan, V. ; Punitha, K. ; Ragupathy, S. ; Shan, B. Priestly ; Gunasekaran, T. ; Sengottian, Mothil ; Joshy, Arun ; Subramaniam, Shivaswamy Muthugounder ; Venkatachalam, Chitra Devi ; Ravichandran, Sathish Raam</creatorcontrib><description>Medical information System provides the best way to collect patient’s medical information. It helps the doctors to retrieve the patient’s previous medical history very faster and able to provide suitable treatment quickly. To keep medical information of a patient securely is a difficult task. Many MQTT algorithms have been developed to provide security for the patients information. The sensitive medical information of a patient can also be protected by using biometric technology. Internet of Thing (IoT) technology used to send the medical information to the doctor like blood group, BP value, cholesterol level and heart rate level. The proposed system helps to provide the comorbidity details of the Covid-19 infected patient’s to doctors mobile phone. It also takes the current health details of the patients like temperature, respiratory rate and heart beat rate. By considering the past and present medical data of the Covid-19 patients , this system recommends the type of treatment to be given for Covid-19 infected patients.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0068693</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Biometrics ; Blood groups ; Cholesterol ; Comorbidity ; Coronaviruses ; COVID-19 ; Heart rate ; Information systems ; Internet of Things ; Patients ; Physicians ; Respiratory rate</subject><ispartof>AIP conference proceedings, 2021, Vol.2387 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Sengottian, Mothil</contributor><contributor>Joshy, Arun</contributor><contributor>Subramaniam, Shivaswamy Muthugounder</contributor><contributor>Venkatachalam, Chitra Devi</contributor><contributor>Ravichandran, Sathish Raam</contributor><creatorcontrib>Kumaresan, V.</creatorcontrib><creatorcontrib>Punitha, K.</creatorcontrib><creatorcontrib>Ragupathy, S.</creatorcontrib><creatorcontrib>Shan, B. Priestly</creatorcontrib><creatorcontrib>Gunasekaran, T.</creatorcontrib><title>A biometric based medical information system for the identification of comorbidity in Covid-19 patients</title><title>AIP conference proceedings</title><description>Medical information System provides the best way to collect patient’s medical information. It helps the doctors to retrieve the patient’s previous medical history very faster and able to provide suitable treatment quickly. To keep medical information of a patient securely is a difficult task. Many MQTT algorithms have been developed to provide security for the patients information. The sensitive medical information of a patient can also be protected by using biometric technology. Internet of Thing (IoT) technology used to send the medical information to the doctor like blood group, BP value, cholesterol level and heart rate level. The proposed system helps to provide the comorbidity details of the Covid-19 infected patient’s to doctors mobile phone. It also takes the current health details of the patients like temperature, respiratory rate and heart beat rate. By considering the past and present medical data of the Covid-19 patients , this system recommends the type of treatment to be given for Covid-19 infected patients.</description><subject>Algorithms</subject><subject>Biometrics</subject><subject>Blood groups</subject><subject>Cholesterol</subject><subject>Comorbidity</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Heart rate</subject><subject>Information systems</subject><subject>Internet of Things</subject><subject>Patients</subject><subject>Physicians</subject><subject>Respiratory rate</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZsTTabZHMsxS8oeFHwFvKpKd1mTdJC_73RFrx5CkyemWFeAK4xmmHEyB2dIcR6JsgJmGBKccMZZqdggpDomrYj7-fgIucVQq3gvJ-AjznUIQ6upGCgVtlZODgbjFrDsPExDaqEuIF5n4sbYC3A8ulgsG5Tgq_s9zd6aOIQkw42lH1thIu4C7bBAo5VVJsvwZlX6-yuju8UvD3cvy6emuXL4_NivmzGFhHSWM25JtQZzLS32BAimOi9MbxXDimNBLKdpxz1iDDuCBPYK0O85tTazhEyBTeHuWOKX1uXi1zFbdrUlbKloiaEKGuruj2obEL5vUGOKQwq7SVG8idISeUxyP_wLqY_KEfryTcD_HTp</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Kumaresan, V.</creator><creator>Punitha, K.</creator><creator>Ragupathy, S.</creator><creator>Shan, B. Priestly</creator><creator>Gunasekaran, T.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211101</creationdate><title>A biometric based medical information system for the identification of comorbidity in Covid-19 patients</title><author>Kumaresan, V. ; Punitha, K. ; Ragupathy, S. ; Shan, B. Priestly ; Gunasekaran, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2033-db77b35ec16bfd1c339698fcc78ae0ab090d4f57080367e3691fac3fb75dd4e33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biometrics</topic><topic>Blood groups</topic><topic>Cholesterol</topic><topic>Comorbidity</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Heart rate</topic><topic>Information systems</topic><topic>Internet of Things</topic><topic>Patients</topic><topic>Physicians</topic><topic>Respiratory rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumaresan, V.</creatorcontrib><creatorcontrib>Punitha, K.</creatorcontrib><creatorcontrib>Ragupathy, S.</creatorcontrib><creatorcontrib>Shan, B. Priestly</creatorcontrib><creatorcontrib>Gunasekaran, T.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumaresan, V.</au><au>Punitha, K.</au><au>Ragupathy, S.</au><au>Shan, B. Priestly</au><au>Gunasekaran, T.</au><au>Sengottian, Mothil</au><au>Joshy, Arun</au><au>Subramaniam, Shivaswamy Muthugounder</au><au>Venkatachalam, Chitra Devi</au><au>Ravichandran, Sathish Raam</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A biometric based medical information system for the identification of comorbidity in Covid-19 patients</atitle><btitle>AIP conference proceedings</btitle><date>2021-11-01</date><risdate>2021</risdate><volume>2387</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Medical information System provides the best way to collect patient’s medical information. It helps the doctors to retrieve the patient’s previous medical history very faster and able to provide suitable treatment quickly. To keep medical information of a patient securely is a difficult task. Many MQTT algorithms have been developed to provide security for the patients information. The sensitive medical information of a patient can also be protected by using biometric technology. Internet of Thing (IoT) technology used to send the medical information to the doctor like blood group, BP value, cholesterol level and heart rate level. The proposed system helps to provide the comorbidity details of the Covid-19 infected patient’s to doctors mobile phone. It also takes the current health details of the patients like temperature, respiratory rate and heart beat rate. By considering the past and present medical data of the Covid-19 patients , this system recommends the type of treatment to be given for Covid-19 infected patients.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0068693</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2387 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0068693
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Biometrics
Blood groups
Cholesterol
Comorbidity
Coronaviruses
COVID-19
Heart rate
Information systems
Internet of Things
Patients
Physicians
Respiratory rate
title A biometric based medical information system for the identification of comorbidity in Covid-19 patients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20biometric%20based%20medical%20information%20system%20for%20the%20identification%20of%20comorbidity%20in%20Covid-19%20patients&rft.btitle=AIP%20conference%20proceedings&rft.au=Kumaresan,%20V.&rft.date=2021-11-01&rft.volume=2387&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0068693&rft_dat=%3Cproquest_scita%3E2590630562%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2033-db77b35ec16bfd1c339698fcc78ae0ab090d4f57080367e3691fac3fb75dd4e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2590630562&rft_id=info:pmid/&rfr_iscdi=true