Loading…
Algorithm to detect growing gas leakage based on a statistical criterion
The current commercial production technologies often involve the generation and pipeline transportation of gaseous substances in utilities and premises. Airborne concentration is a quantitative gas leakage characteristic, which may increase up to threshold values causing danger to humans and the env...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2402 |
creator | Prokofiev, Oleg V. Savochkin, Alexander E. |
description | The current commercial production technologies often involve the generation and pipeline transportation of gaseous substances in utilities and premises. Airborne concentration is a quantitative gas leakage characteristic, which may increase up to threshold values causing danger to humans and the environment and creating an emergency. Herein, changing the airborne concentration of impurities is described by a time series model. The possibility of creating an algorithm to automatically search for a trend break and estimate a new trend slope as a sign of emerging gas leakage has been studied. The authors propose a new way of applying a trend break as a criterion for detecting abnormalities. This allows identifying an event that leads to growing gas leakage. The authors have tested an algorithm that allows detecting new trends in the time series and predicting rapidly approaching threshold gas impurity concentration. |
doi_str_mv | 10.1063/5.0073462 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0073462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597589292</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2032-99e59e24a1994e6b6492f0a0633dce4c449852482d2b3bb56953f75840d363203</originalsourceid><addsrcrecordid>eNp9kE1LwzAcxoMoWKcHv0HAm9CZ_PPS5jiGOmHgRcFbSNu0ZnZNTTLFb2_HBt48PZff88KD0DUlc0okuxNzQgrGJZygjApB80JSeYoyQhTPgbO3c3QR44YQUEVRZmi16DsfXHrf4uRxY5OtE-6C_3ZDhzsTcW_Nh-ksrky0DfYDNjgmk1xMrjY9rievDc4Pl-isNX20V0edodeH-5flKl8_Pz4tF-t8BMIgV8oKZYEbqhS3spJcQUvMNJ01teU156oUwEtooGJVJaQSrC1EyUnDJJsiZujmkDsG_7mzMemN34VhqtQg1EQqUDBRtwcq1m6_1g96DG5rwo_-8kELfXxJj037H0yJ3t_6Z2C_Zp9nkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2597589292</pqid></control><display><type>conference_proceeding</type><title>Algorithm to detect growing gas leakage based on a statistical criterion</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Prokofiev, Oleg V. ; Savochkin, Alexander E.</creator><contributor>Kovalev, Igor V. ; Stupina, Alena A. ; Voroshilova, Anna A.</contributor><creatorcontrib>Prokofiev, Oleg V. ; Savochkin, Alexander E. ; Kovalev, Igor V. ; Stupina, Alena A. ; Voroshilova, Anna A.</creatorcontrib><description>The current commercial production technologies often involve the generation and pipeline transportation of gaseous substances in utilities and premises. Airborne concentration is a quantitative gas leakage characteristic, which may increase up to threshold values causing danger to humans and the environment and creating an emergency. Herein, changing the airborne concentration of impurities is described by a time series model. The possibility of creating an algorithm to automatically search for a trend break and estimate a new trend slope as a sign of emerging gas leakage has been studied. The authors propose a new way of applying a trend break as a criterion for detecting abnormalities. This allows identifying an event that leads to growing gas leakage. The authors have tested an algorithm that allows detecting new trends in the time series and predicting rapidly approaching threshold gas impurity concentration.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0073462</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Abnormalities ; Algorithms ; Criteria ; Impurities ; Leakage ; Time series ; Trends</subject><ispartof>AIP conference proceedings, 2021, Vol.2402 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Kovalev, Igor V.</contributor><contributor>Stupina, Alena A.</contributor><contributor>Voroshilova, Anna A.</contributor><creatorcontrib>Prokofiev, Oleg V.</creatorcontrib><creatorcontrib>Savochkin, Alexander E.</creatorcontrib><title>Algorithm to detect growing gas leakage based on a statistical criterion</title><title>AIP conference proceedings</title><description>The current commercial production technologies often involve the generation and pipeline transportation of gaseous substances in utilities and premises. Airborne concentration is a quantitative gas leakage characteristic, which may increase up to threshold values causing danger to humans and the environment and creating an emergency. Herein, changing the airborne concentration of impurities is described by a time series model. The possibility of creating an algorithm to automatically search for a trend break and estimate a new trend slope as a sign of emerging gas leakage has been studied. The authors propose a new way of applying a trend break as a criterion for detecting abnormalities. This allows identifying an event that leads to growing gas leakage. The authors have tested an algorithm that allows detecting new trends in the time series and predicting rapidly approaching threshold gas impurity concentration.</description><subject>Abnormalities</subject><subject>Algorithms</subject><subject>Criteria</subject><subject>Impurities</subject><subject>Leakage</subject><subject>Time series</subject><subject>Trends</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LwzAcxoMoWKcHv0HAm9CZ_PPS5jiGOmHgRcFbSNu0ZnZNTTLFb2_HBt48PZff88KD0DUlc0okuxNzQgrGJZygjApB80JSeYoyQhTPgbO3c3QR44YQUEVRZmi16DsfXHrf4uRxY5OtE-6C_3ZDhzsTcW_Nh-ksrky0DfYDNjgmk1xMrjY9rievDc4Pl-isNX20V0edodeH-5flKl8_Pz4tF-t8BMIgV8oKZYEbqhS3spJcQUvMNJ01teU156oUwEtooGJVJaQSrC1EyUnDJJsiZujmkDsG_7mzMemN34VhqtQg1EQqUDBRtwcq1m6_1g96DG5rwo_-8kELfXxJj037H0yJ3t_6Z2C_Zp9nkA</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Prokofiev, Oleg V.</creator><creator>Savochkin, Alexander E.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211115</creationdate><title>Algorithm to detect growing gas leakage based on a statistical criterion</title><author>Prokofiev, Oleg V. ; Savochkin, Alexander E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2032-99e59e24a1994e6b6492f0a0633dce4c449852482d2b3bb56953f75840d363203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Algorithms</topic><topic>Criteria</topic><topic>Impurities</topic><topic>Leakage</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prokofiev, Oleg V.</creatorcontrib><creatorcontrib>Savochkin, Alexander E.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prokofiev, Oleg V.</au><au>Savochkin, Alexander E.</au><au>Kovalev, Igor V.</au><au>Stupina, Alena A.</au><au>Voroshilova, Anna A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Algorithm to detect growing gas leakage based on a statistical criterion</atitle><btitle>AIP conference proceedings</btitle><date>2021-11-15</date><risdate>2021</risdate><volume>2402</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The current commercial production technologies often involve the generation and pipeline transportation of gaseous substances in utilities and premises. Airborne concentration is a quantitative gas leakage characteristic, which may increase up to threshold values causing danger to humans and the environment and creating an emergency. Herein, changing the airborne concentration of impurities is described by a time series model. The possibility of creating an algorithm to automatically search for a trend break and estimate a new trend slope as a sign of emerging gas leakage has been studied. The authors propose a new way of applying a trend break as a criterion for detecting abnormalities. This allows identifying an event that leads to growing gas leakage. The authors have tested an algorithm that allows detecting new trends in the time series and predicting rapidly approaching threshold gas impurity concentration.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0073462</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2021, Vol.2402 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0073462 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Abnormalities Algorithms Criteria Impurities Leakage Time series Trends |
title | Algorithm to detect growing gas leakage based on a statistical criterion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Algorithm%20to%20detect%20growing%20gas%20leakage%20based%20on%20a%20statistical%20criterion&rft.btitle=AIP%20conference%20proceedings&rft.au=Prokofiev,%20Oleg%20V.&rft.date=2021-11-15&rft.volume=2402&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0073462&rft_dat=%3Cproquest_scita%3E2597589292%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2032-99e59e24a1994e6b6492f0a0633dce4c449852482d2b3bb56953f75840d363203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2597589292&rft_id=info:pmid/&rfr_iscdi=true |