Loading…
Path-integral calculation of the third dielectric virial coefficient of noble gases
We present a rigorous framework for fully quantum calculation of the third dielectric virial coefficient Cɛ(T) of noble gases, including exchange effects. The quantum effects are taken into account with the path-integral Monte Carlo method. Calculations employing state-of-the-art pair and three-body...
Saved in:
Published in: | The Journal of chemical physics 2021-12, Vol.155 (23), p.234103-234103 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a rigorous framework for fully quantum calculation of the third dielectric virial coefficient Cɛ(T) of noble gases, including exchange effects. The quantum effects are taken into account with the path-integral Monte Carlo method. Calculations employing state-of-the-art pair and three-body potentials and pair polarizabilities yield results generally consistent with the few scattered experimental data available for helium, neon, and argon, but rigorous calculations with well-described uncertainties will require the development of surfaces for the three-body nonadditive polarizability and the three-body dipole moment. The framework, developed here for the first time, will enable new approaches to primary temperature and pressure metrology based on first-principles calculations of gas properties. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0077684 |