Loading…

Three-dimensional non-hydrostatic model for dam-break flows

A three-dimensional (3D) non-hydrostatic model is presented for the simulation of dam-break flows. The model solves the Reynolds-averaged Navier–Stokes equations using the projection method. 3D computational grids are constructed from a two-dimensional horizontal unstructured mesh by adding horizont...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2022-02, Vol.34 (2)
Main Authors: Ai, Congfang, Ma, Yuxiang, Ding, Weiye, Xie, Zhihua, Dong, Guohai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A three-dimensional (3D) non-hydrostatic model is presented for the simulation of dam-break flows. The model solves the Reynolds-averaged Navier–Stokes equations using the projection method. 3D computational grids are constructed from a two-dimensional horizontal unstructured mesh by adding horizontal layers in the vertical direction. Based on the horizontal unstructured grid system, horizontal advection terms are discretized by a momentum conservative scheme. The proposed model is validated with several physical experiments. The agreement between the model results and experimental data is generally good, which demonstrates the capability of the proposed model to resolve dam-break flows over flat and uneven bottoms with complex geometries. Moreover, the efficiency of the model is evaluated with 3D dam-break flow experiments. Comparisons between the non-hydrostatic model and the corresponding quasi-3D shallow water model are also performed, which confirm the role of non-hydrostatic effects in dam-break flows.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0081094