Loading…

Plasmon-induced coherence, exciton-induced transparency, and Fano interference for hybrid plasmonic systems in strong coupling regime

We present an analytical model describing the transition to a strong coupling regime for an ensemble of emitters resonantly coupled to a localized surface plasmon in a metal–dielectric structure. The response of a hybrid system to an external field is determined by two distinct mechanisms involving...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2022-05, Vol.156 (19), p.194702-194702
Main Authors: Scott, Zoe, Muhammad, Shafi, Shahbazyan, Tigran V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present an analytical model describing the transition to a strong coupling regime for an ensemble of emitters resonantly coupled to a localized surface plasmon in a metal–dielectric structure. The response of a hybrid system to an external field is determined by two distinct mechanisms involving collective states of emitters interacting with the plasmon mode. The first mechanism is the near-field coupling between the bright collective state and the plasmon mode, which underpins the energy exchange between the system components and gives rise to exciton-induced transparency minimum in scattering spectra in the weak coupling regime and to emergence of polaritonic bands as the system transitions to the strong coupling regime. The second mechanism is the Fano interference between the plasmon dipole moment and the plasmon-induced dipole moment of the bright collective state as the hybrid system interacts with the radiation field. The latter mechanism is greatly facilitated by plasmon-induced coherence in a system with the characteristic size below the diffraction limit as the individual emitters comprising the collective state are driven by the same alternating plasmon near field and, therefore, all oscillate in phase. This cooperative effect leads to scaling of the Fano asymmetry parameter and of the Fano function amplitude with the ensemble size, and therefore, it strongly affects the shape of scattering spectra for large ensembles. Specifically, with increasing emitter numbers, the Fano interference leads to a spectral weight shift toward the lower energy polaritonic band.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0083197