Loading…

Power balance in the smallest tokamak

The ion temperature of the smallest tokamak, the major radius of 0.1 m, is measured using Doppler broadening spectroscopy. Experiments are performed for helium discharge. Ion temperature Ti = 0.7eV is obtained from the Doppler broadened line spectrum of the helium ion. The electron temperature and d...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2022-04, Vol.12 (4), p.045204-045204-6
Main Authors: Kimata, Sora, Okamoto, Atsushi, Fujita, Takaaki, Arimoto, Hideki, Yasuda, Kouhei, Kado, Keitaro, Tsunoda, Keishi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c454t-9a8ed328e938fc7e08285b69a24861c43611cc715ab3d91ac98cf5b26a7c150f3
container_end_page 045204-6
container_issue 4
container_start_page 045204
container_title AIP advances
container_volume 12
creator Kimata, Sora
Okamoto, Atsushi
Fujita, Takaaki
Arimoto, Hideki
Yasuda, Kouhei
Kado, Keitaro
Tsunoda, Keishi
description The ion temperature of the smallest tokamak, the major radius of 0.1 m, is measured using Doppler broadening spectroscopy. Experiments are performed for helium discharge. Ion temperature Ti = 0.7eV is obtained from the Doppler broadened line spectrum of the helium ion. The electron temperature and density measured using line emission intensities of the helium atom are Te = 4.7eV and ne = 3.2 × 1018m−3. The major radius R0 = 0.11m and the minor radius a = 0.03m are obtained from magnetic measurements. Then, the energy flow from the electron to the ion is evaluated as well as ohmic heating and power losses due to atomic processes. The main loss channel for electron stored energy is conduction even though the tokamak is immersed in the residual neutral gas. Total energy confinement time τE = 2.3µs is determined from the power balance, which is comparable with that deduced from the neo-Alcator scaling law.
doi_str_mv 10.1063/5.0085770
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0085770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e3a1e157bcda4e1c95ff02cce8140585</doaj_id><sourcerecordid>2646814479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-9a8ed328e938fc7e08285b69a24861c43611cc715ab3d91ac98cf5b26a7c150f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWGoP_oMF8aCwNe9NjlJ8FAQ96DnMZhPddrupyVbx37u6pQqCc5lh-PjmgdAxwVOCJbsQU4yVKAq8h0aUCJUzSuX-r_oQTVJa4D64JljxETp9CO8uZiU00FqX1W3WvbgsraBpXOqyLixhBcsjdOChSW6yzWP0dH31OLvN7-5v5rPLu9xywbtcg3IVo8ppprwtHFZUiVJqoFxJYjmThFhbEAElqzQBq5X1oqQSCksE9myM5oO3CrAw61ivIH6YALX5boT4bCB2tW2ccQyII6IobQXcEauF95ha6xThWCjRu04G1zqG101_jFmETWz79Q2VXPYYL3RPnQ2UjSGl6PxuKsHm66lGmO1Te_Z8YJOtO-jq0O7gtxB_QLOu_H_wX_MnfPGCOQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646814479</pqid></control><display><type>article</type><title>Power balance in the smallest tokamak</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kimata, Sora ; Okamoto, Atsushi ; Fujita, Takaaki ; Arimoto, Hideki ; Yasuda, Kouhei ; Kado, Keitaro ; Tsunoda, Keishi</creator><creatorcontrib>Kimata, Sora ; Okamoto, Atsushi ; Fujita, Takaaki ; Arimoto, Hideki ; Yasuda, Kouhei ; Kado, Keitaro ; Tsunoda, Keishi</creatorcontrib><description>The ion temperature of the smallest tokamak, the major radius of 0.1 m, is measured using Doppler broadening spectroscopy. Experiments are performed for helium discharge. Ion temperature Ti = 0.7eV is obtained from the Doppler broadened line spectrum of the helium ion. The electron temperature and density measured using line emission intensities of the helium atom are Te = 4.7eV and ne = 3.2 × 1018m−3. The major radius R0 = 0.11m and the minor radius a = 0.03m are obtained from magnetic measurements. Then, the energy flow from the electron to the ion is evaluated as well as ohmic heating and power losses due to atomic processes. The main loss channel for electron stored energy is conduction even though the tokamak is immersed in the residual neutral gas. Total energy confinement time τE = 2.3µs is determined from the power balance, which is comparable with that deduced from the neo-Alcator scaling law.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0085770</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Electron energy ; Energy flow ; Helium atoms ; Helium ions ; Internal energy ; Ion temperature ; Magnetic measurement ; Neutral gases ; Scaling laws ; Tokamak devices</subject><ispartof>AIP advances, 2022-04, Vol.12 (4), p.045204-045204-6</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c454t-9a8ed328e938fc7e08285b69a24861c43611cc715ab3d91ac98cf5b26a7c150f3</cites><orcidid>0000-0003-1784-9732 ; 0000-0001-9042-7523 ; 0000-0002-9380-386X ; 0000-0001-7650-4297 ; 0000-0002-5785-9065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/5.0085770$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76408</link.rule.ids></links><search><creatorcontrib>Kimata, Sora</creatorcontrib><creatorcontrib>Okamoto, Atsushi</creatorcontrib><creatorcontrib>Fujita, Takaaki</creatorcontrib><creatorcontrib>Arimoto, Hideki</creatorcontrib><creatorcontrib>Yasuda, Kouhei</creatorcontrib><creatorcontrib>Kado, Keitaro</creatorcontrib><creatorcontrib>Tsunoda, Keishi</creatorcontrib><title>Power balance in the smallest tokamak</title><title>AIP advances</title><description>The ion temperature of the smallest tokamak, the major radius of 0.1 m, is measured using Doppler broadening spectroscopy. Experiments are performed for helium discharge. Ion temperature Ti = 0.7eV is obtained from the Doppler broadened line spectrum of the helium ion. The electron temperature and density measured using line emission intensities of the helium atom are Te = 4.7eV and ne = 3.2 × 1018m−3. The major radius R0 = 0.11m and the minor radius a = 0.03m are obtained from magnetic measurements. Then, the energy flow from the electron to the ion is evaluated as well as ohmic heating and power losses due to atomic processes. The main loss channel for electron stored energy is conduction even though the tokamak is immersed in the residual neutral gas. Total energy confinement time τE = 2.3µs is determined from the power balance, which is comparable with that deduced from the neo-Alcator scaling law.</description><subject>Electron energy</subject><subject>Energy flow</subject><subject>Helium atoms</subject><subject>Helium ions</subject><subject>Internal energy</subject><subject>Ion temperature</subject><subject>Magnetic measurement</subject><subject>Neutral gases</subject><subject>Scaling laws</subject><subject>Tokamak devices</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kEtLAzEQgIMoWGoP_oMF8aCwNe9NjlJ8FAQ96DnMZhPddrupyVbx37u6pQqCc5lh-PjmgdAxwVOCJbsQU4yVKAq8h0aUCJUzSuX-r_oQTVJa4D64JljxETp9CO8uZiU00FqX1W3WvbgsraBpXOqyLixhBcsjdOChSW6yzWP0dH31OLvN7-5v5rPLu9xywbtcg3IVo8ppprwtHFZUiVJqoFxJYjmThFhbEAElqzQBq5X1oqQSCksE9myM5oO3CrAw61ivIH6YALX5boT4bCB2tW2ccQyII6IobQXcEauF95ha6xThWCjRu04G1zqG101_jFmETWz79Q2VXPYYL3RPnQ2UjSGl6PxuKsHm66lGmO1Te_Z8YJOtO-jq0O7gtxB_QLOu_H_wX_MnfPGCOQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Kimata, Sora</creator><creator>Okamoto, Atsushi</creator><creator>Fujita, Takaaki</creator><creator>Arimoto, Hideki</creator><creator>Yasuda, Kouhei</creator><creator>Kado, Keitaro</creator><creator>Tsunoda, Keishi</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1784-9732</orcidid><orcidid>https://orcid.org/0000-0001-9042-7523</orcidid><orcidid>https://orcid.org/0000-0002-9380-386X</orcidid><orcidid>https://orcid.org/0000-0001-7650-4297</orcidid><orcidid>https://orcid.org/0000-0002-5785-9065</orcidid></search><sort><creationdate>20220401</creationdate><title>Power balance in the smallest tokamak</title><author>Kimata, Sora ; Okamoto, Atsushi ; Fujita, Takaaki ; Arimoto, Hideki ; Yasuda, Kouhei ; Kado, Keitaro ; Tsunoda, Keishi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-9a8ed328e938fc7e08285b69a24861c43611cc715ab3d91ac98cf5b26a7c150f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electron energy</topic><topic>Energy flow</topic><topic>Helium atoms</topic><topic>Helium ions</topic><topic>Internal energy</topic><topic>Ion temperature</topic><topic>Magnetic measurement</topic><topic>Neutral gases</topic><topic>Scaling laws</topic><topic>Tokamak devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimata, Sora</creatorcontrib><creatorcontrib>Okamoto, Atsushi</creatorcontrib><creatorcontrib>Fujita, Takaaki</creatorcontrib><creatorcontrib>Arimoto, Hideki</creatorcontrib><creatorcontrib>Yasuda, Kouhei</creatorcontrib><creatorcontrib>Kado, Keitaro</creatorcontrib><creatorcontrib>Tsunoda, Keishi</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimata, Sora</au><au>Okamoto, Atsushi</au><au>Fujita, Takaaki</au><au>Arimoto, Hideki</au><au>Yasuda, Kouhei</au><au>Kado, Keitaro</au><au>Tsunoda, Keishi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power balance in the smallest tokamak</atitle><jtitle>AIP advances</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>12</volume><issue>4</issue><spage>045204</spage><epage>045204-6</epage><pages>045204-045204-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The ion temperature of the smallest tokamak, the major radius of 0.1 m, is measured using Doppler broadening spectroscopy. Experiments are performed for helium discharge. Ion temperature Ti = 0.7eV is obtained from the Doppler broadened line spectrum of the helium ion. The electron temperature and density measured using line emission intensities of the helium atom are Te = 4.7eV and ne = 3.2 × 1018m−3. The major radius R0 = 0.11m and the minor radius a = 0.03m are obtained from magnetic measurements. Then, the energy flow from the electron to the ion is evaluated as well as ohmic heating and power losses due to atomic processes. The main loss channel for electron stored energy is conduction even though the tokamak is immersed in the residual neutral gas. Total energy confinement time τE = 2.3µs is determined from the power balance, which is comparable with that deduced from the neo-Alcator scaling law.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0085770</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1784-9732</orcidid><orcidid>https://orcid.org/0000-0001-9042-7523</orcidid><orcidid>https://orcid.org/0000-0002-9380-386X</orcidid><orcidid>https://orcid.org/0000-0001-7650-4297</orcidid><orcidid>https://orcid.org/0000-0002-5785-9065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2022-04, Vol.12 (4), p.045204-045204-6
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_5_0085770
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Electron energy
Energy flow
Helium atoms
Helium ions
Internal energy
Ion temperature
Magnetic measurement
Neutral gases
Scaling laws
Tokamak devices
title Power balance in the smallest tokamak
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20balance%20in%20the%20smallest%20tokamak&rft.jtitle=AIP%20advances&rft.au=Kimata,%20Sora&rft.date=2022-04-01&rft.volume=12&rft.issue=4&rft.spage=045204&rft.epage=045204-6&rft.pages=045204-045204-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0085770&rft_dat=%3Cproquest_scita%3E2646814479%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-9a8ed328e938fc7e08285b69a24861c43611cc715ab3d91ac98cf5b26a7c150f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646814479&rft_id=info:pmid/&rfr_iscdi=true