Loading…

Scanning nitrogen-vacancy magnetometry down to 350 mK

We report on the implementation of a scanning nitrogen-vacancy (NV) magnetometer in a dry dilution refrigerator. Using pulsed optically detected magnetic resonance combined with efficient microwave delivery through a co-planar waveguide, we reach a base temperature of 350 mK, limited by experimental...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2022-05, Vol.120 (22)
Main Authors: Scheidegger, P. J., Diesch, S., Palm, M. L., Degen, C. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on the implementation of a scanning nitrogen-vacancy (NV) magnetometer in a dry dilution refrigerator. Using pulsed optically detected magnetic resonance combined with efficient microwave delivery through a co-planar waveguide, we reach a base temperature of 350 mK, limited by experimental heat load and thermalization of the probe. We demonstrate scanning NV magnetometry by imaging superconducting vortices in a 50-nm-thin aluminum microstructure. The sensitivity of our measurements is approximately 3 μT per square root Hz. Our work demonstrates the feasibility for performing noninvasive magnetic field imaging with scanning NV centers at sub-Kelvin temperatures.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0093548