Loading…
Scanning nitrogen-vacancy magnetometry down to 350 mK
We report on the implementation of a scanning nitrogen-vacancy (NV) magnetometer in a dry dilution refrigerator. Using pulsed optically detected magnetic resonance combined with efficient microwave delivery through a co-planar waveguide, we reach a base temperature of 350 mK, limited by experimental...
Saved in:
Published in: | Applied physics letters 2022-05, Vol.120 (22) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the implementation of a scanning nitrogen-vacancy (NV) magnetometer in a dry dilution refrigerator. Using pulsed optically detected magnetic resonance combined with efficient microwave delivery through a co-planar waveguide, we reach a base temperature of 350 mK, limited by experimental heat load and thermalization of the probe. We demonstrate scanning NV magnetometry by imaging superconducting vortices in a 50-nm-thin aluminum microstructure. The sensitivity of our measurements is approximately 3 μT per square root Hz. Our work demonstrates the feasibility for performing noninvasive magnetic field imaging with scanning NV centers at sub-Kelvin temperatures. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0093548 |