Loading…
Hydrodynamic approach to electronic transport
The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. One such material, graphene, is not only an excellent platform for the experimental realization of the hydrodynamic flow of electrons, but also allows for a controll...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2551 |
creator | Narozhny, Boris |
description | The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. One such material, graphene, is not only an excellent platform for the experimental realization of the hydrodynamic flow of electrons, but also allows for a controlled derivation of the hydrodynamic equations on the basis of kinetic theory. The resulting hydrodynamic theory of electronic transport in graphene yields quantitative predictions for experimentally relevant quantities, e.g. viscosity, electrical conductivity, etc. Here I review recent theoretical advances in the field, compare the hydrodynamic theory of charge carriers in graphene with relativistic hydrodynamics and recent experiments, and discuss applications of hydrodynamic approach to novel materials beyond graphene. |
doi_str_mv | 10.1063/5.0098950 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0098950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712063987</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1680-b58f070d8217bc5943ed08f93964e983fb011233a547cfcefb1ca6099261949d3</originalsourceid><addsrcrecordid>eNotUMtKAzEUDaJgrS78gwF3wtR7k8lrKUWtUHCj4C5kMglOaSdjki7m7x1pVwcOh_Mi5B5hhSDYE18BaKU5XJAFco61FCguyWJmm5o27Pua3OS8A6BaSrUg9WbqUuymwR56V9lxTNG6n6rEyu-9KykOM12SHfIYU7klV8Hus78745J8vb58rjf19uPtff28rUcUCuqWqwASOkVRto7rhvkOVNBMi8ZrxUILiJQxyxvpgvOhRWcFaE0F6kZ3bEkeTr5znd-jz8Xs4jENc6ShEuk8VCs5qx5Pquz6YksfBzOm_mDTZBDM_x2Gm_Md7A9h2VAj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2712063987</pqid></control><display><type>conference_proceeding</type><title>Hydrodynamic approach to electronic transport</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Narozhny, Boris</creator><contributor>Katkov, V. L. ; Osipov, V. A.</contributor><creatorcontrib>Narozhny, Boris ; Katkov, V. L. ; Osipov, V. A.</creatorcontrib><description>The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. One such material, graphene, is not only an excellent platform for the experimental realization of the hydrodynamic flow of electrons, but also allows for a controlled derivation of the hydrodynamic equations on the basis of kinetic theory. The resulting hydrodynamic theory of electronic transport in graphene yields quantitative predictions for experimentally relevant quantities, e.g. viscosity, electrical conductivity, etc. Here I review recent theoretical advances in the field, compare the hydrodynamic theory of charge carriers in graphene with relativistic hydrodynamics and recent experiments, and discuss applications of hydrodynamic approach to novel materials beyond graphene.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0098950</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Current carriers ; Electrical resistivity ; Electron transport ; Electrons ; Graphene ; Hydrodynamic equations ; Kinetic theory</subject><ispartof>AIP conference proceedings, 2022, Vol.2551 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Katkov, V. L.</contributor><contributor>Osipov, V. A.</contributor><creatorcontrib>Narozhny, Boris</creatorcontrib><title>Hydrodynamic approach to electronic transport</title><title>AIP conference proceedings</title><description>The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. One such material, graphene, is not only an excellent platform for the experimental realization of the hydrodynamic flow of electrons, but also allows for a controlled derivation of the hydrodynamic equations on the basis of kinetic theory. The resulting hydrodynamic theory of electronic transport in graphene yields quantitative predictions for experimentally relevant quantities, e.g. viscosity, electrical conductivity, etc. Here I review recent theoretical advances in the field, compare the hydrodynamic theory of charge carriers in graphene with relativistic hydrodynamics and recent experiments, and discuss applications of hydrodynamic approach to novel materials beyond graphene.</description><subject>Current carriers</subject><subject>Electrical resistivity</subject><subject>Electron transport</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Hydrodynamic equations</subject><subject>Kinetic theory</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUMtKAzEUDaJgrS78gwF3wtR7k8lrKUWtUHCj4C5kMglOaSdjki7m7x1pVwcOh_Mi5B5hhSDYE18BaKU5XJAFco61FCguyWJmm5o27Pua3OS8A6BaSrUg9WbqUuymwR56V9lxTNG6n6rEyu-9KykOM12SHfIYU7klV8Hus78745J8vb58rjf19uPtff28rUcUCuqWqwASOkVRto7rhvkOVNBMi8ZrxUILiJQxyxvpgvOhRWcFaE0F6kZ3bEkeTr5znd-jz8Xs4jENc6ShEuk8VCs5qx5Pquz6YksfBzOm_mDTZBDM_x2Gm_Md7A9h2VAj</recordid><startdate>20220909</startdate><enddate>20220909</enddate><creator>Narozhny, Boris</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220909</creationdate><title>Hydrodynamic approach to electronic transport</title><author>Narozhny, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1680-b58f070d8217bc5943ed08f93964e983fb011233a547cfcefb1ca6099261949d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Current carriers</topic><topic>Electrical resistivity</topic><topic>Electron transport</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Hydrodynamic equations</topic><topic>Kinetic theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narozhny, Boris</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narozhny, Boris</au><au>Katkov, V. L.</au><au>Osipov, V. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hydrodynamic approach to electronic transport</atitle><btitle>AIP conference proceedings</btitle><date>2022-09-09</date><risdate>2022</risdate><volume>2551</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. One such material, graphene, is not only an excellent platform for the experimental realization of the hydrodynamic flow of electrons, but also allows for a controlled derivation of the hydrodynamic equations on the basis of kinetic theory. The resulting hydrodynamic theory of electronic transport in graphene yields quantitative predictions for experimentally relevant quantities, e.g. viscosity, electrical conductivity, etc. Here I review recent theoretical advances in the field, compare the hydrodynamic theory of charge carriers in graphene with relativistic hydrodynamics and recent experiments, and discuss applications of hydrodynamic approach to novel materials beyond graphene.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0098950</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2022, Vol.2551 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0098950 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Current carriers Electrical resistivity Electron transport Electrons Graphene Hydrodynamic equations Kinetic theory |
title | Hydrodynamic approach to electronic transport |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hydrodynamic%20approach%20to%20electronic%20transport&rft.btitle=AIP%20conference%20proceedings&rft.au=Narozhny,%20Boris&rft.date=2022-09-09&rft.volume=2551&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0098950&rft_dat=%3Cproquest_scita%3E2712063987%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1680-b58f070d8217bc5943ed08f93964e983fb011233a547cfcefb1ca6099261949d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2712063987&rft_id=info:pmid/&rfr_iscdi=true |