Loading…

Hydrodynamic approach to electronic transport

The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. One such material, graphene, is not only an excellent platform for the experimental realization of the hydrodynamic flow of electrons, but also allows for a controll...

Full description

Saved in:
Bibliographic Details
Main Author: Narozhny, Boris
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2551
creator Narozhny, Boris
description The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. One such material, graphene, is not only an excellent platform for the experimental realization of the hydrodynamic flow of electrons, but also allows for a controlled derivation of the hydrodynamic equations on the basis of kinetic theory. The resulting hydrodynamic theory of electronic transport in graphene yields quantitative predictions for experimentally relevant quantities, e.g. viscosity, electrical conductivity, etc. Here I review recent theoretical advances in the field, compare the hydrodynamic theory of charge carriers in graphene with relativistic hydrodynamics and recent experiments, and discuss applications of hydrodynamic approach to novel materials beyond graphene.
doi_str_mv 10.1063/5.0098950
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0098950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712063987</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1680-b58f070d8217bc5943ed08f93964e983fb011233a547cfcefb1ca6099261949d3</originalsourceid><addsrcrecordid>eNotUMtKAzEUDaJgrS78gwF3wtR7k8lrKUWtUHCj4C5kMglOaSdjki7m7x1pVwcOh_Mi5B5hhSDYE18BaKU5XJAFco61FCguyWJmm5o27Pua3OS8A6BaSrUg9WbqUuymwR56V9lxTNG6n6rEyu-9KykOM12SHfIYU7klV8Hus78745J8vb58rjf19uPtff28rUcUCuqWqwASOkVRto7rhvkOVNBMi8ZrxUILiJQxyxvpgvOhRWcFaE0F6kZ3bEkeTr5znd-jz8Xs4jENc6ShEuk8VCs5qx5Pquz6YksfBzOm_mDTZBDM_x2Gm_Md7A9h2VAj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2712063987</pqid></control><display><type>conference_proceeding</type><title>Hydrodynamic approach to electronic transport</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Narozhny, Boris</creator><contributor>Katkov, V. L. ; Osipov, V. A.</contributor><creatorcontrib>Narozhny, Boris ; Katkov, V. L. ; Osipov, V. A.</creatorcontrib><description>The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. One such material, graphene, is not only an excellent platform for the experimental realization of the hydrodynamic flow of electrons, but also allows for a controlled derivation of the hydrodynamic equations on the basis of kinetic theory. The resulting hydrodynamic theory of electronic transport in graphene yields quantitative predictions for experimentally relevant quantities, e.g. viscosity, electrical conductivity, etc. Here I review recent theoretical advances in the field, compare the hydrodynamic theory of charge carriers in graphene with relativistic hydrodynamics and recent experiments, and discuss applications of hydrodynamic approach to novel materials beyond graphene.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0098950</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Current carriers ; Electrical resistivity ; Electron transport ; Electrons ; Graphene ; Hydrodynamic equations ; Kinetic theory</subject><ispartof>AIP conference proceedings, 2022, Vol.2551 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Katkov, V. L.</contributor><contributor>Osipov, V. A.</contributor><creatorcontrib>Narozhny, Boris</creatorcontrib><title>Hydrodynamic approach to electronic transport</title><title>AIP conference proceedings</title><description>The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. One such material, graphene, is not only an excellent platform for the experimental realization of the hydrodynamic flow of electrons, but also allows for a controlled derivation of the hydrodynamic equations on the basis of kinetic theory. The resulting hydrodynamic theory of electronic transport in graphene yields quantitative predictions for experimentally relevant quantities, e.g. viscosity, electrical conductivity, etc. Here I review recent theoretical advances in the field, compare the hydrodynamic theory of charge carriers in graphene with relativistic hydrodynamics and recent experiments, and discuss applications of hydrodynamic approach to novel materials beyond graphene.</description><subject>Current carriers</subject><subject>Electrical resistivity</subject><subject>Electron transport</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Hydrodynamic equations</subject><subject>Kinetic theory</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUMtKAzEUDaJgrS78gwF3wtR7k8lrKUWtUHCj4C5kMglOaSdjki7m7x1pVwcOh_Mi5B5hhSDYE18BaKU5XJAFco61FCguyWJmm5o27Pua3OS8A6BaSrUg9WbqUuymwR56V9lxTNG6n6rEyu-9KykOM12SHfIYU7klV8Hus78745J8vb58rjf19uPtff28rUcUCuqWqwASOkVRto7rhvkOVNBMi8ZrxUILiJQxyxvpgvOhRWcFaE0F6kZ3bEkeTr5znd-jz8Xs4jENc6ShEuk8VCs5qx5Pquz6YksfBzOm_mDTZBDM_x2Gm_Md7A9h2VAj</recordid><startdate>20220909</startdate><enddate>20220909</enddate><creator>Narozhny, Boris</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220909</creationdate><title>Hydrodynamic approach to electronic transport</title><author>Narozhny, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1680-b58f070d8217bc5943ed08f93964e983fb011233a547cfcefb1ca6099261949d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Current carriers</topic><topic>Electrical resistivity</topic><topic>Electron transport</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Hydrodynamic equations</topic><topic>Kinetic theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narozhny, Boris</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narozhny, Boris</au><au>Katkov, V. L.</au><au>Osipov, V. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hydrodynamic approach to electronic transport</atitle><btitle>AIP conference proceedings</btitle><date>2022-09-09</date><risdate>2022</risdate><volume>2551</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. One such material, graphene, is not only an excellent platform for the experimental realization of the hydrodynamic flow of electrons, but also allows for a controlled derivation of the hydrodynamic equations on the basis of kinetic theory. The resulting hydrodynamic theory of electronic transport in graphene yields quantitative predictions for experimentally relevant quantities, e.g. viscosity, electrical conductivity, etc. Here I review recent theoretical advances in the field, compare the hydrodynamic theory of charge carriers in graphene with relativistic hydrodynamics and recent experiments, and discuss applications of hydrodynamic approach to novel materials beyond graphene.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0098950</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2551 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0098950
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Current carriers
Electrical resistivity
Electron transport
Electrons
Graphene
Hydrodynamic equations
Kinetic theory
title Hydrodynamic approach to electronic transport
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hydrodynamic%20approach%20to%20electronic%20transport&rft.btitle=AIP%20conference%20proceedings&rft.au=Narozhny,%20Boris&rft.date=2022-09-09&rft.volume=2551&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0098950&rft_dat=%3Cproquest_scita%3E2712063987%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1680-b58f070d8217bc5943ed08f93964e983fb011233a547cfcefb1ca6099261949d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2712063987&rft_id=info:pmid/&rfr_iscdi=true