Loading…
An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields
The importance of gas discharges for numerous applications with increasingly small device size motivates a more fundamental understanding of breakdown mechanisms. Gas breakdown theories for these gap sizes unify field emission with the Townsend avalanche, which depends on Townsend's first ioniz...
Saved in:
Published in: | Journal of applied physics 2022-08, Vol.132 (7) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 132 |
creator | Wang, Haoxuan Venkattraman, Ayyaswamy Loveless, Amanda M. Buerke, Cameron J. Garner, Allen L. |
description | The importance of gas discharges for numerous applications with increasingly small device size motivates a more fundamental understanding of breakdown mechanisms. Gas breakdown theories for these gap sizes unify field emission with the Townsend avalanche, which depends on Townsend's first ionization coefficient
α; however, the ratio of the electric field E to gas pressure p for microscale gas breakdown exceeds the range of validity for the typical empirical equation. While some studies have used particle-in-cell simulations to assess
α in this range, they only examined a narrow range of experimental conditions. This work extends this approach to characterize ionization in microscale gaps for N2, Ar, Ne, and He for a broader range of pressure, gap distance d, and applied voltage V. We calculated
α at steady state for
0.75
≤
d
≤
10
μ
m and p = 190, 380, and 760 Torr. As expected,
α
/
p is not a function of reduced electric field
E
/
p for microscale gaps, where the electron mean free path is comparable to d and
E
/
p is high at breakdown. For
d
<
2
μ
m,
α
/
p scales with V and is independent of p. For
d
>
10
μ
m,
α
/
p approaches the standard empirical relationship for
E
/
p
≲
1000
V
Tor
r
−
1
c
m
−
1 and deviates at higher levels because the ionization cross section decreases. We develop a more rigorous semiempirical model for
α, albeit not as universal or simple, for a wider range of d and p for different gas species that may be incorporated into field emission-driven breakdown theories to improve their predictive capability. |
doi_str_mv | 10.1063/5.0098961 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0098961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702311799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8JqPjab5FiKX1Dwouewm520KdvNmmwF_fWmH-Dd0wwzz7wv8yJ0Tck9JRV_EPeEaKUreoImlChdSCHIKZoQwmihtNTn6CKlNSGUKq4nyM96DJvBR2_rDkfo6tGHPq38gF2IOPf-Zz_CNoBz3nrox_1q420MKV8BXtZDwnXf4pVfrrJIu7XQYujAjlkXOw9dmy7Rmau7BFfHOkUfT4_v85di8fb8Op8tCssrNhZSNQ2TjRDaScoYCMUpkKqpREktt6JxkoHjwEhZlrQUEkrplGqsFi0ozfkU3Rx0hxg-t5BGsw7b2GdLwyRhnFKpdaZuD9TuiRTBmSH6TR2_DSVml6QR5phkZu8ObLJ-3IfxP_grxD_QDK3jv_ocgjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702311799</pqid></control><display><type>article</type><title>An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Wang, Haoxuan ; Venkattraman, Ayyaswamy ; Loveless, Amanda M. ; Buerke, Cameron J. ; Garner, Allen L.</creator><creatorcontrib>Wang, Haoxuan ; Venkattraman, Ayyaswamy ; Loveless, Amanda M. ; Buerke, Cameron J. ; Garner, Allen L.</creatorcontrib><description>The importance of gas discharges for numerous applications with increasingly small device size motivates a more fundamental understanding of breakdown mechanisms. Gas breakdown theories for these gap sizes unify field emission with the Townsend avalanche, which depends on Townsend's first ionization coefficient
α; however, the ratio of the electric field E to gas pressure p for microscale gas breakdown exceeds the range of validity for the typical empirical equation. While some studies have used particle-in-cell simulations to assess
α in this range, they only examined a narrow range of experimental conditions. This work extends this approach to characterize ionization in microscale gaps for N2, Ar, Ne, and He for a broader range of pressure, gap distance d, and applied voltage V. We calculated
α at steady state for
0.75
≤
d
≤
10
μ
m and p = 190, 380, and 760 Torr. As expected,
α
/
p is not a function of reduced electric field
E
/
p for microscale gaps, where the electron mean free path is comparable to d and
E
/
p is high at breakdown. For
d
<
2
μ
m,
α
/
p scales with V and is independent of p. For
d
>
10
μ
m,
α
/
p approaches the standard empirical relationship for
E
/
p
≲
1000
V
Tor
r
−
1
c
m
−
1 and deviates at higher levels because the ionization cross section decreases. We develop a more rigorous semiempirical model for
α, albeit not as universal or simple, for a wider range of d and p for different gas species that may be incorporated into field emission-driven breakdown theories to improve their predictive capability.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0098961</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electric fields ; Empirical equations ; Field emission ; Gas breakdown ; Gas discharges ; Gas pressure ; Ionization coefficients ; Ionization cross sections ; Townsend avalanche</subject><ispartof>Journal of applied physics, 2022-08, Vol.132 (7)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933</citedby><cites>FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933</cites><orcidid>0000-0001-5416-7437 ; 0000-0003-0432-7249 ; 0000-0001-8525-9051 ; 0000-0001-9823-0151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Haoxuan</creatorcontrib><creatorcontrib>Venkattraman, Ayyaswamy</creatorcontrib><creatorcontrib>Loveless, Amanda M.</creatorcontrib><creatorcontrib>Buerke, Cameron J.</creatorcontrib><creatorcontrib>Garner, Allen L.</creatorcontrib><title>An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields</title><title>Journal of applied physics</title><description>The importance of gas discharges for numerous applications with increasingly small device size motivates a more fundamental understanding of breakdown mechanisms. Gas breakdown theories for these gap sizes unify field emission with the Townsend avalanche, which depends on Townsend's first ionization coefficient
α; however, the ratio of the electric field E to gas pressure p for microscale gas breakdown exceeds the range of validity for the typical empirical equation. While some studies have used particle-in-cell simulations to assess
α in this range, they only examined a narrow range of experimental conditions. This work extends this approach to characterize ionization in microscale gaps for N2, Ar, Ne, and He for a broader range of pressure, gap distance d, and applied voltage V. We calculated
α at steady state for
0.75
≤
d
≤
10
μ
m and p = 190, 380, and 760 Torr. As expected,
α
/
p is not a function of reduced electric field
E
/
p for microscale gaps, where the electron mean free path is comparable to d and
E
/
p is high at breakdown. For
d
<
2
μ
m,
α
/
p scales with V and is independent of p. For
d
>
10
μ
m,
α
/
p approaches the standard empirical relationship for
E
/
p
≲
1000
V
Tor
r
−
1
c
m
−
1 and deviates at higher levels because the ionization cross section decreases. We develop a more rigorous semiempirical model for
α, albeit not as universal or simple, for a wider range of d and p for different gas species that may be incorporated into field emission-driven breakdown theories to improve their predictive capability.</description><subject>Applied physics</subject><subject>Electric fields</subject><subject>Empirical equations</subject><subject>Field emission</subject><subject>Gas breakdown</subject><subject>Gas discharges</subject><subject>Gas pressure</subject><subject>Ionization coefficients</subject><subject>Ionization cross sections</subject><subject>Townsend avalanche</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8JqPjab5FiKX1Dwouewm520KdvNmmwF_fWmH-Dd0wwzz7wv8yJ0Tck9JRV_EPeEaKUreoImlChdSCHIKZoQwmihtNTn6CKlNSGUKq4nyM96DJvBR2_rDkfo6tGHPq38gF2IOPf-Zz_CNoBz3nrox_1q420MKV8BXtZDwnXf4pVfrrJIu7XQYujAjlkXOw9dmy7Rmau7BFfHOkUfT4_v85di8fb8Op8tCssrNhZSNQ2TjRDaScoYCMUpkKqpREktt6JxkoHjwEhZlrQUEkrplGqsFi0ozfkU3Rx0hxg-t5BGsw7b2GdLwyRhnFKpdaZuD9TuiRTBmSH6TR2_DSVml6QR5phkZu8ObLJ-3IfxP_grxD_QDK3jv_ocgjM</recordid><startdate>20220821</startdate><enddate>20220821</enddate><creator>Wang, Haoxuan</creator><creator>Venkattraman, Ayyaswamy</creator><creator>Loveless, Amanda M.</creator><creator>Buerke, Cameron J.</creator><creator>Garner, Allen L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5416-7437</orcidid><orcidid>https://orcid.org/0000-0003-0432-7249</orcidid><orcidid>https://orcid.org/0000-0001-8525-9051</orcidid><orcidid>https://orcid.org/0000-0001-9823-0151</orcidid></search><sort><creationdate>20220821</creationdate><title>An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields</title><author>Wang, Haoxuan ; Venkattraman, Ayyaswamy ; Loveless, Amanda M. ; Buerke, Cameron J. ; Garner, Allen L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Electric fields</topic><topic>Empirical equations</topic><topic>Field emission</topic><topic>Gas breakdown</topic><topic>Gas discharges</topic><topic>Gas pressure</topic><topic>Ionization coefficients</topic><topic>Ionization cross sections</topic><topic>Townsend avalanche</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haoxuan</creatorcontrib><creatorcontrib>Venkattraman, Ayyaswamy</creatorcontrib><creatorcontrib>Loveless, Amanda M.</creatorcontrib><creatorcontrib>Buerke, Cameron J.</creatorcontrib><creatorcontrib>Garner, Allen L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haoxuan</au><au>Venkattraman, Ayyaswamy</au><au>Loveless, Amanda M.</au><au>Buerke, Cameron J.</au><au>Garner, Allen L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields</atitle><jtitle>Journal of applied physics</jtitle><date>2022-08-21</date><risdate>2022</risdate><volume>132</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The importance of gas discharges for numerous applications with increasingly small device size motivates a more fundamental understanding of breakdown mechanisms. Gas breakdown theories for these gap sizes unify field emission with the Townsend avalanche, which depends on Townsend's first ionization coefficient
α; however, the ratio of the electric field E to gas pressure p for microscale gas breakdown exceeds the range of validity for the typical empirical equation. While some studies have used particle-in-cell simulations to assess
α in this range, they only examined a narrow range of experimental conditions. This work extends this approach to characterize ionization in microscale gaps for N2, Ar, Ne, and He for a broader range of pressure, gap distance d, and applied voltage V. We calculated
α at steady state for
0.75
≤
d
≤
10
μ
m and p = 190, 380, and 760 Torr. As expected,
α
/
p is not a function of reduced electric field
E
/
p for microscale gaps, where the electron mean free path is comparable to d and
E
/
p is high at breakdown. For
d
<
2
μ
m,
α
/
p scales with V and is independent of p. For
d
>
10
μ
m,
α
/
p approaches the standard empirical relationship for
E
/
p
≲
1000
V
Tor
r
−
1
c
m
−
1 and deviates at higher levels because the ionization cross section decreases. We develop a more rigorous semiempirical model for
α, albeit not as universal or simple, for a wider range of d and p for different gas species that may be incorporated into field emission-driven breakdown theories to improve their predictive capability.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0098961</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5416-7437</orcidid><orcidid>https://orcid.org/0000-0003-0432-7249</orcidid><orcidid>https://orcid.org/0000-0001-8525-9051</orcidid><orcidid>https://orcid.org/0000-0001-9823-0151</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2022-08, Vol.132 (7) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0098961 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Electric fields Empirical equations Field emission Gas breakdown Gas discharges Gas pressure Ionization coefficients Ionization cross sections Townsend avalanche |
title | An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20relationship%20for%20ionization%20coefficient%20for%20microscale%20gaps%20and%20high%20reduced%20electric%20fields&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wang,%20Haoxuan&rft.date=2022-08-21&rft.volume=132&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0098961&rft_dat=%3Cproquest_scita%3E2702311799%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2702311799&rft_id=info:pmid/&rfr_iscdi=true |