Loading…

An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields

The importance of gas discharges for numerous applications with increasingly small device size motivates a more fundamental understanding of breakdown mechanisms. Gas breakdown theories for these gap sizes unify field emission with the Townsend avalanche, which depends on Townsend's first ioniz...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2022-08, Vol.132 (7)
Main Authors: Wang, Haoxuan, Venkattraman, Ayyaswamy, Loveless, Amanda M., Buerke, Cameron J., Garner, Allen L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933
cites cdi_FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933
container_end_page
container_issue 7
container_start_page
container_title Journal of applied physics
container_volume 132
creator Wang, Haoxuan
Venkattraman, Ayyaswamy
Loveless, Amanda M.
Buerke, Cameron J.
Garner, Allen L.
description The importance of gas discharges for numerous applications with increasingly small device size motivates a more fundamental understanding of breakdown mechanisms. Gas breakdown theories for these gap sizes unify field emission with the Townsend avalanche, which depends on Townsend's first ionization coefficient α; however, the ratio of the electric field E to gas pressure p for microscale gas breakdown exceeds the range of validity for the typical empirical equation. While some studies have used particle-in-cell simulations to assess α in this range, they only examined a narrow range of experimental conditions. This work extends this approach to characterize ionization in microscale gaps for N2, Ar, Ne, and He for a broader range of pressure, gap distance d, and applied voltage V. We calculated α at steady state for 0.75 ≤ d ≤ 10 μ m and p = 190, 380, and 760 Torr. As expected, α / p is not a function of reduced electric field E / p for microscale gaps, where the electron mean free path is comparable to d and E / p is high at breakdown. For d < 2 μ m, α / p scales with V and is independent of p. For d > 10 μ m, α / p approaches the standard empirical relationship for E / p ≲ 1000 V Tor r − 1 c m − 1 and deviates at higher levels because the ionization cross section decreases. We develop a more rigorous semiempirical model for α, albeit not as universal or simple, for a wider range of d and p for different gas species that may be incorporated into field emission-driven breakdown theories to improve their predictive capability.
doi_str_mv 10.1063/5.0098961
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0098961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702311799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8JqPjab5FiKX1Dwouewm520KdvNmmwF_fWmH-Dd0wwzz7wv8yJ0Tck9JRV_EPeEaKUreoImlChdSCHIKZoQwmihtNTn6CKlNSGUKq4nyM96DJvBR2_rDkfo6tGHPq38gF2IOPf-Zz_CNoBz3nrox_1q420MKV8BXtZDwnXf4pVfrrJIu7XQYujAjlkXOw9dmy7Rmau7BFfHOkUfT4_v85di8fb8Op8tCssrNhZSNQ2TjRDaScoYCMUpkKqpREktt6JxkoHjwEhZlrQUEkrplGqsFi0ozfkU3Rx0hxg-t5BGsw7b2GdLwyRhnFKpdaZuD9TuiRTBmSH6TR2_DSVml6QR5phkZu8ObLJ-3IfxP_grxD_QDK3jv_ocgjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702311799</pqid></control><display><type>article</type><title>An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Wang, Haoxuan ; Venkattraman, Ayyaswamy ; Loveless, Amanda M. ; Buerke, Cameron J. ; Garner, Allen L.</creator><creatorcontrib>Wang, Haoxuan ; Venkattraman, Ayyaswamy ; Loveless, Amanda M. ; Buerke, Cameron J. ; Garner, Allen L.</creatorcontrib><description>The importance of gas discharges for numerous applications with increasingly small device size motivates a more fundamental understanding of breakdown mechanisms. Gas breakdown theories for these gap sizes unify field emission with the Townsend avalanche, which depends on Townsend's first ionization coefficient α; however, the ratio of the electric field E to gas pressure p for microscale gas breakdown exceeds the range of validity for the typical empirical equation. While some studies have used particle-in-cell simulations to assess α in this range, they only examined a narrow range of experimental conditions. This work extends this approach to characterize ionization in microscale gaps for N2, Ar, Ne, and He for a broader range of pressure, gap distance d, and applied voltage V. We calculated α at steady state for 0.75 ≤ d ≤ 10 μ m and p = 190, 380, and 760 Torr. As expected, α / p is not a function of reduced electric field E / p for microscale gaps, where the electron mean free path is comparable to d and E / p is high at breakdown. For d &lt; 2 μ m, α / p scales with V and is independent of p. For d &gt; 10 μ m, α / p approaches the standard empirical relationship for E / p ≲ 1000 V Tor r − 1 c m − 1 and deviates at higher levels because the ionization cross section decreases. We develop a more rigorous semiempirical model for α, albeit not as universal or simple, for a wider range of d and p for different gas species that may be incorporated into field emission-driven breakdown theories to improve their predictive capability.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0098961</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electric fields ; Empirical equations ; Field emission ; Gas breakdown ; Gas discharges ; Gas pressure ; Ionization coefficients ; Ionization cross sections ; Townsend avalanche</subject><ispartof>Journal of applied physics, 2022-08, Vol.132 (7)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933</citedby><cites>FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933</cites><orcidid>0000-0001-5416-7437 ; 0000-0003-0432-7249 ; 0000-0001-8525-9051 ; 0000-0001-9823-0151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Haoxuan</creatorcontrib><creatorcontrib>Venkattraman, Ayyaswamy</creatorcontrib><creatorcontrib>Loveless, Amanda M.</creatorcontrib><creatorcontrib>Buerke, Cameron J.</creatorcontrib><creatorcontrib>Garner, Allen L.</creatorcontrib><title>An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields</title><title>Journal of applied physics</title><description>The importance of gas discharges for numerous applications with increasingly small device size motivates a more fundamental understanding of breakdown mechanisms. Gas breakdown theories for these gap sizes unify field emission with the Townsend avalanche, which depends on Townsend's first ionization coefficient α; however, the ratio of the electric field E to gas pressure p for microscale gas breakdown exceeds the range of validity for the typical empirical equation. While some studies have used particle-in-cell simulations to assess α in this range, they only examined a narrow range of experimental conditions. This work extends this approach to characterize ionization in microscale gaps for N2, Ar, Ne, and He for a broader range of pressure, gap distance d, and applied voltage V. We calculated α at steady state for 0.75 ≤ d ≤ 10 μ m and p = 190, 380, and 760 Torr. As expected, α / p is not a function of reduced electric field E / p for microscale gaps, where the electron mean free path is comparable to d and E / p is high at breakdown. For d &lt; 2 μ m, α / p scales with V and is independent of p. For d &gt; 10 μ m, α / p approaches the standard empirical relationship for E / p ≲ 1000 V Tor r − 1 c m − 1 and deviates at higher levels because the ionization cross section decreases. We develop a more rigorous semiempirical model for α, albeit not as universal or simple, for a wider range of d and p for different gas species that may be incorporated into field emission-driven breakdown theories to improve their predictive capability.</description><subject>Applied physics</subject><subject>Electric fields</subject><subject>Empirical equations</subject><subject>Field emission</subject><subject>Gas breakdown</subject><subject>Gas discharges</subject><subject>Gas pressure</subject><subject>Ionization coefficients</subject><subject>Ionization cross sections</subject><subject>Townsend avalanche</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8JqPjab5FiKX1Dwouewm520KdvNmmwF_fWmH-Dd0wwzz7wv8yJ0Tck9JRV_EPeEaKUreoImlChdSCHIKZoQwmihtNTn6CKlNSGUKq4nyM96DJvBR2_rDkfo6tGHPq38gF2IOPf-Zz_CNoBz3nrox_1q420MKV8BXtZDwnXf4pVfrrJIu7XQYujAjlkXOw9dmy7Rmau7BFfHOkUfT4_v85di8fb8Op8tCssrNhZSNQ2TjRDaScoYCMUpkKqpREktt6JxkoHjwEhZlrQUEkrplGqsFi0ozfkU3Rx0hxg-t5BGsw7b2GdLwyRhnFKpdaZuD9TuiRTBmSH6TR2_DSVml6QR5phkZu8ObLJ-3IfxP_grxD_QDK3jv_ocgjM</recordid><startdate>20220821</startdate><enddate>20220821</enddate><creator>Wang, Haoxuan</creator><creator>Venkattraman, Ayyaswamy</creator><creator>Loveless, Amanda M.</creator><creator>Buerke, Cameron J.</creator><creator>Garner, Allen L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5416-7437</orcidid><orcidid>https://orcid.org/0000-0003-0432-7249</orcidid><orcidid>https://orcid.org/0000-0001-8525-9051</orcidid><orcidid>https://orcid.org/0000-0001-9823-0151</orcidid></search><sort><creationdate>20220821</creationdate><title>An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields</title><author>Wang, Haoxuan ; Venkattraman, Ayyaswamy ; Loveless, Amanda M. ; Buerke, Cameron J. ; Garner, Allen L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Electric fields</topic><topic>Empirical equations</topic><topic>Field emission</topic><topic>Gas breakdown</topic><topic>Gas discharges</topic><topic>Gas pressure</topic><topic>Ionization coefficients</topic><topic>Ionization cross sections</topic><topic>Townsend avalanche</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haoxuan</creatorcontrib><creatorcontrib>Venkattraman, Ayyaswamy</creatorcontrib><creatorcontrib>Loveless, Amanda M.</creatorcontrib><creatorcontrib>Buerke, Cameron J.</creatorcontrib><creatorcontrib>Garner, Allen L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haoxuan</au><au>Venkattraman, Ayyaswamy</au><au>Loveless, Amanda M.</au><au>Buerke, Cameron J.</au><au>Garner, Allen L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields</atitle><jtitle>Journal of applied physics</jtitle><date>2022-08-21</date><risdate>2022</risdate><volume>132</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The importance of gas discharges for numerous applications with increasingly small device size motivates a more fundamental understanding of breakdown mechanisms. Gas breakdown theories for these gap sizes unify field emission with the Townsend avalanche, which depends on Townsend's first ionization coefficient α; however, the ratio of the electric field E to gas pressure p for microscale gas breakdown exceeds the range of validity for the typical empirical equation. While some studies have used particle-in-cell simulations to assess α in this range, they only examined a narrow range of experimental conditions. This work extends this approach to characterize ionization in microscale gaps for N2, Ar, Ne, and He for a broader range of pressure, gap distance d, and applied voltage V. We calculated α at steady state for 0.75 ≤ d ≤ 10 μ m and p = 190, 380, and 760 Torr. As expected, α / p is not a function of reduced electric field E / p for microscale gaps, where the electron mean free path is comparable to d and E / p is high at breakdown. For d &lt; 2 μ m, α / p scales with V and is independent of p. For d &gt; 10 μ m, α / p approaches the standard empirical relationship for E / p ≲ 1000 V Tor r − 1 c m − 1 and deviates at higher levels because the ionization cross section decreases. We develop a more rigorous semiempirical model for α, albeit not as universal or simple, for a wider range of d and p for different gas species that may be incorporated into field emission-driven breakdown theories to improve their predictive capability.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0098961</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5416-7437</orcidid><orcidid>https://orcid.org/0000-0003-0432-7249</orcidid><orcidid>https://orcid.org/0000-0001-8525-9051</orcidid><orcidid>https://orcid.org/0000-0001-9823-0151</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-08, Vol.132 (7)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0098961
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Electric fields
Empirical equations
Field emission
Gas breakdown
Gas discharges
Gas pressure
Ionization coefficients
Ionization cross sections
Townsend avalanche
title An empirical relationship for ionization coefficient for microscale gaps and high reduced electric fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20relationship%20for%20ionization%20coefficient%20for%20microscale%20gaps%20and%20high%20reduced%20electric%20fields&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wang,%20Haoxuan&rft.date=2022-08-21&rft.volume=132&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0098961&rft_dat=%3Cproquest_scita%3E2702311799%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-78bb27b559f7122e5831e06b6541c3c5bf72ef3e204441457e47f88bc95de8933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2702311799&rft_id=info:pmid/&rfr_iscdi=true