Loading…
Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers
We adopt the stretched spiral vortex sub-grid model for large-eddy simulation (LES) of turbulent convection at extreme Rayleigh numbers. We simulate Rayleigh–Bénard convection (RBC) for Rayleigh numbers ranging from 106 to 1015 and for Prandtl numbers 0.768 and 1. We choose a box of dimensions 1:1:1...
Saved in:
Published in: | Physics of fluids (1994) 2022-07, Vol.34 (7) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 34 |
creator | Samuel, Roshan Samtaney, Ravi Verma, Mahendra K. |
description | We adopt the stretched spiral vortex sub-grid model for large-eddy simulation (LES) of turbulent convection at extreme Rayleigh numbers. We simulate Rayleigh–Bénard convection (RBC) for Rayleigh numbers ranging from 106 to 1015 and for Prandtl numbers 0.768 and 1. We choose a box of dimensions 1:1:10 to reduce computational cost. Our LES yields Nusselt and Reynolds numbers that are in good agreement with the direct-numerical simulation (DNS) results of Iyer et al. [“Classical 1/3 scaling of convection holds up to
Ra
=
10
15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)] albeit with a smaller grid size and at significantly reduced computational expense. For example, in our simulations at
R
a
=
10
13, we use grids that are 1/120 times the grid resolution as that of the DNS [Iyer et al., “Classical 1/3 scaling of convection holds up to
Ra
=
10
15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)]. The Reynolds numbers in our simulations span 3 orders of magnitude from 1000 to 1 700 000. Consistent with the literature, we obtain scaling relations for Nusselt and Reynolds numbers as
N
u
∼
R
a
0.321 and
R
e
∼
R
a
0.495. We also perform LES of RBC with periodic side walls, for which we obtain the corresponding scaling exponents as 0.343 and 0.477, respectively. Our LES is a promising tool to push simulations of thermal convection to extreme Rayleigh numbers and, hence, enable us to test the transition to the ultimate convection regime. |
doi_str_mv | 10.1063/5.0099979 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0099979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694063334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3</originalsourceid><addsrcrecordid>eNp90E1KxDAUwPEgCo6jC29QcKXQ8aVpkslSB79gQBh0HdLkdewwbcekFbvzDp7Cc3gTT2LnA5eu8hY_3iN_Qk4pjCgIdslHAEopqfbIgMJYxVIIsb-eJcRCMHpIjkJYAABTiRiQ2dT4OcboXBeFomyXpinqKqrzaGa6JRbzl5-Pz-vvr8p4F9m6ekO7AaaJ8L3xWOIfjKq2zNCHY3KQm2XAk907JM-3N0-T-3j6ePcwuZrGliWyiWmSoUkQpRUZc6mUADaljItMAO9_wJw0TCqQCt0YOHcpdz3hLqO5YzmyITnb7l35-rXF0OhF3fqqP6kTodK-BmNpr863yvo6BI-5XvmiNL7TFPQ6meZ6l6y3F1sbbNFsQvyDfwFHiWyu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694063334</pqid></control><display><type>article</type><title>Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Samuel, Roshan ; Samtaney, Ravi ; Verma, Mahendra K.</creator><creatorcontrib>Samuel, Roshan ; Samtaney, Ravi ; Verma, Mahendra K.</creatorcontrib><description>We adopt the stretched spiral vortex sub-grid model for large-eddy simulation (LES) of turbulent convection at extreme Rayleigh numbers. We simulate Rayleigh–Bénard convection (RBC) for Rayleigh numbers ranging from 106 to 1015 and for Prandtl numbers 0.768 and 1. We choose a box of dimensions 1:1:10 to reduce computational cost. Our LES yields Nusselt and Reynolds numbers that are in good agreement with the direct-numerical simulation (DNS) results of Iyer et al. [“Classical 1/3 scaling of convection holds up to
Ra
=
10
15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)] albeit with a smaller grid size and at significantly reduced computational expense. For example, in our simulations at
R
a
=
10
13, we use grids that are 1/120 times the grid resolution as that of the DNS [Iyer et al., “Classical 1/3 scaling of convection holds up to
Ra
=
10
15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)]. The Reynolds numbers in our simulations span 3 orders of magnitude from 1000 to 1 700 000. Consistent with the literature, we obtain scaling relations for Nusselt and Reynolds numbers as
N
u
∼
R
a
0.321 and
R
e
∼
R
a
0.495. We also perform LES of RBC with periodic side walls, for which we obtain the corresponding scaling exponents as 0.343 and 0.477, respectively. Our LES is a promising tool to push simulations of thermal convection to extreme Rayleigh numbers and, hence, enable us to test the transition to the ultimate convection regime.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0099979</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computing costs ; Extreme values ; Fluid dynamics ; Fluid flow ; Free convection ; Large eddy simulation ; Mathematical models ; Physics ; Rayleigh-Benard convection ; Reynolds number ; Scaling ; Simulation ; Thermal simulation ; Vortices</subject><ispartof>Physics of fluids (1994), 2022-07, Vol.34 (7)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3</citedby><cites>FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3</cites><orcidid>0000-0002-3380-4561 ; 0000-0002-1280-9881 ; 0000-0002-4702-6473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Samuel, Roshan</creatorcontrib><creatorcontrib>Samtaney, Ravi</creatorcontrib><creatorcontrib>Verma, Mahendra K.</creatorcontrib><title>Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers</title><title>Physics of fluids (1994)</title><description>We adopt the stretched spiral vortex sub-grid model for large-eddy simulation (LES) of turbulent convection at extreme Rayleigh numbers. We simulate Rayleigh–Bénard convection (RBC) for Rayleigh numbers ranging from 106 to 1015 and for Prandtl numbers 0.768 and 1. We choose a box of dimensions 1:1:10 to reduce computational cost. Our LES yields Nusselt and Reynolds numbers that are in good agreement with the direct-numerical simulation (DNS) results of Iyer et al. [“Classical 1/3 scaling of convection holds up to
Ra
=
10
15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)] albeit with a smaller grid size and at significantly reduced computational expense. For example, in our simulations at
R
a
=
10
13, we use grids that are 1/120 times the grid resolution as that of the DNS [Iyer et al., “Classical 1/3 scaling of convection holds up to
Ra
=
10
15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)]. The Reynolds numbers in our simulations span 3 orders of magnitude from 1000 to 1 700 000. Consistent with the literature, we obtain scaling relations for Nusselt and Reynolds numbers as
N
u
∼
R
a
0.321 and
R
e
∼
R
a
0.495. We also perform LES of RBC with periodic side walls, for which we obtain the corresponding scaling exponents as 0.343 and 0.477, respectively. Our LES is a promising tool to push simulations of thermal convection to extreme Rayleigh numbers and, hence, enable us to test the transition to the ultimate convection regime.</description><subject>Computing costs</subject><subject>Extreme values</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Rayleigh-Benard convection</subject><subject>Reynolds number</subject><subject>Scaling</subject><subject>Simulation</subject><subject>Thermal simulation</subject><subject>Vortices</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1KxDAUwPEgCo6jC29QcKXQ8aVpkslSB79gQBh0HdLkdewwbcekFbvzDp7Cc3gTT2LnA5eu8hY_3iN_Qk4pjCgIdslHAEopqfbIgMJYxVIIsb-eJcRCMHpIjkJYAABTiRiQ2dT4OcboXBeFomyXpinqKqrzaGa6JRbzl5-Pz-vvr8p4F9m6ekO7AaaJ8L3xWOIfjKq2zNCHY3KQm2XAk907JM-3N0-T-3j6ePcwuZrGliWyiWmSoUkQpRUZc6mUADaljItMAO9_wJw0TCqQCt0YOHcpdz3hLqO5YzmyITnb7l35-rXF0OhF3fqqP6kTodK-BmNpr863yvo6BI-5XvmiNL7TFPQ6meZ6l6y3F1sbbNFsQvyDfwFHiWyu</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Samuel, Roshan</creator><creator>Samtaney, Ravi</creator><creator>Verma, Mahendra K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3380-4561</orcidid><orcidid>https://orcid.org/0000-0002-1280-9881</orcidid><orcidid>https://orcid.org/0000-0002-4702-6473</orcidid></search><sort><creationdate>202207</creationdate><title>Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers</title><author>Samuel, Roshan ; Samtaney, Ravi ; Verma, Mahendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computing costs</topic><topic>Extreme values</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Rayleigh-Benard convection</topic><topic>Reynolds number</topic><topic>Scaling</topic><topic>Simulation</topic><topic>Thermal simulation</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samuel, Roshan</creatorcontrib><creatorcontrib>Samtaney, Ravi</creatorcontrib><creatorcontrib>Verma, Mahendra K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samuel, Roshan</au><au>Samtaney, Ravi</au><au>Verma, Mahendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-07</date><risdate>2022</risdate><volume>34</volume><issue>7</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We adopt the stretched spiral vortex sub-grid model for large-eddy simulation (LES) of turbulent convection at extreme Rayleigh numbers. We simulate Rayleigh–Bénard convection (RBC) for Rayleigh numbers ranging from 106 to 1015 and for Prandtl numbers 0.768 and 1. We choose a box of dimensions 1:1:10 to reduce computational cost. Our LES yields Nusselt and Reynolds numbers that are in good agreement with the direct-numerical simulation (DNS) results of Iyer et al. [“Classical 1/3 scaling of convection holds up to
Ra
=
10
15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)] albeit with a smaller grid size and at significantly reduced computational expense. For example, in our simulations at
R
a
=
10
13, we use grids that are 1/120 times the grid resolution as that of the DNS [Iyer et al., “Classical 1/3 scaling of convection holds up to
Ra
=
10
15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)]. The Reynolds numbers in our simulations span 3 orders of magnitude from 1000 to 1 700 000. Consistent with the literature, we obtain scaling relations for Nusselt and Reynolds numbers as
N
u
∼
R
a
0.321 and
R
e
∼
R
a
0.495. We also perform LES of RBC with periodic side walls, for which we obtain the corresponding scaling exponents as 0.343 and 0.477, respectively. Our LES is a promising tool to push simulations of thermal convection to extreme Rayleigh numbers and, hence, enable us to test the transition to the ultimate convection regime.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0099979</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3380-4561</orcidid><orcidid>https://orcid.org/0000-0002-1280-9881</orcidid><orcidid>https://orcid.org/0000-0002-4702-6473</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2022-07, Vol.34 (7) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0099979 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Computing costs Extreme values Fluid dynamics Fluid flow Free convection Large eddy simulation Mathematical models Physics Rayleigh-Benard convection Reynolds number Scaling Simulation Thermal simulation Vortices |
title | Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-eddy%20simulation%20of%20Rayleigh%E2%80%93B%C3%A9nard%20convection%20at%20extreme%20Rayleigh%20numbers&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Samuel,%20Roshan&rft.date=2022-07&rft.volume=34&rft.issue=7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0099979&rft_dat=%3Cproquest_scita%3E2694063334%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694063334&rft_id=info:pmid/&rfr_iscdi=true |