Loading…

Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers

We adopt the stretched spiral vortex sub-grid model for large-eddy simulation (LES) of turbulent convection at extreme Rayleigh numbers. We simulate Rayleigh–Bénard convection (RBC) for Rayleigh numbers ranging from 106 to 1015 and for Prandtl numbers 0.768 and 1. We choose a box of dimensions 1:1:1...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2022-07, Vol.34 (7)
Main Authors: Samuel, Roshan, Samtaney, Ravi, Verma, Mahendra K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3
cites cdi_FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3
container_end_page
container_issue 7
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Samuel, Roshan
Samtaney, Ravi
Verma, Mahendra K.
description We adopt the stretched spiral vortex sub-grid model for large-eddy simulation (LES) of turbulent convection at extreme Rayleigh numbers. We simulate Rayleigh–Bénard convection (RBC) for Rayleigh numbers ranging from 106 to 1015 and for Prandtl numbers 0.768 and 1. We choose a box of dimensions 1:1:10 to reduce computational cost. Our LES yields Nusselt and Reynolds numbers that are in good agreement with the direct-numerical simulation (DNS) results of Iyer et al. [“Classical 1/3 scaling of convection holds up to Ra = 10 15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)] albeit with a smaller grid size and at significantly reduced computational expense. For example, in our simulations at R a = 10 13, we use grids that are 1/120 times the grid resolution as that of the DNS [Iyer et al., “Classical 1/3 scaling of convection holds up to Ra = 10 15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)]. The Reynolds numbers in our simulations span 3 orders of magnitude from 1000 to 1 700 000. Consistent with the literature, we obtain scaling relations for Nusselt and Reynolds numbers as N u ∼ R a 0.321 and R e ∼ R a 0.495. We also perform LES of RBC with periodic side walls, for which we obtain the corresponding scaling exponents as 0.343 and 0.477, respectively. Our LES is a promising tool to push simulations of thermal convection to extreme Rayleigh numbers and, hence, enable us to test the transition to the ultimate convection regime.
doi_str_mv 10.1063/5.0099979
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0099979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694063334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3</originalsourceid><addsrcrecordid>eNp90E1KxDAUwPEgCo6jC29QcKXQ8aVpkslSB79gQBh0HdLkdewwbcekFbvzDp7Cc3gTT2LnA5eu8hY_3iN_Qk4pjCgIdslHAEopqfbIgMJYxVIIsb-eJcRCMHpIjkJYAABTiRiQ2dT4OcboXBeFomyXpinqKqrzaGa6JRbzl5-Pz-vvr8p4F9m6ekO7AaaJ8L3xWOIfjKq2zNCHY3KQm2XAk907JM-3N0-T-3j6ePcwuZrGliWyiWmSoUkQpRUZc6mUADaljItMAO9_wJw0TCqQCt0YOHcpdz3hLqO5YzmyITnb7l35-rXF0OhF3fqqP6kTodK-BmNpr863yvo6BI-5XvmiNL7TFPQ6meZ6l6y3F1sbbNFsQvyDfwFHiWyu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694063334</pqid></control><display><type>article</type><title>Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Samuel, Roshan ; Samtaney, Ravi ; Verma, Mahendra K.</creator><creatorcontrib>Samuel, Roshan ; Samtaney, Ravi ; Verma, Mahendra K.</creatorcontrib><description>We adopt the stretched spiral vortex sub-grid model for large-eddy simulation (LES) of turbulent convection at extreme Rayleigh numbers. We simulate Rayleigh–Bénard convection (RBC) for Rayleigh numbers ranging from 106 to 1015 and for Prandtl numbers 0.768 and 1. We choose a box of dimensions 1:1:10 to reduce computational cost. Our LES yields Nusselt and Reynolds numbers that are in good agreement with the direct-numerical simulation (DNS) results of Iyer et al. [“Classical 1/3 scaling of convection holds up to Ra = 10 15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)] albeit with a smaller grid size and at significantly reduced computational expense. For example, in our simulations at R a = 10 13, we use grids that are 1/120 times the grid resolution as that of the DNS [Iyer et al., “Classical 1/3 scaling of convection holds up to Ra = 10 15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)]. The Reynolds numbers in our simulations span 3 orders of magnitude from 1000 to 1 700 000. Consistent with the literature, we obtain scaling relations for Nusselt and Reynolds numbers as N u ∼ R a 0.321 and R e ∼ R a 0.495. We also perform LES of RBC with periodic side walls, for which we obtain the corresponding scaling exponents as 0.343 and 0.477, respectively. Our LES is a promising tool to push simulations of thermal convection to extreme Rayleigh numbers and, hence, enable us to test the transition to the ultimate convection regime.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0099979</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computing costs ; Extreme values ; Fluid dynamics ; Fluid flow ; Free convection ; Large eddy simulation ; Mathematical models ; Physics ; Rayleigh-Benard convection ; Reynolds number ; Scaling ; Simulation ; Thermal simulation ; Vortices</subject><ispartof>Physics of fluids (1994), 2022-07, Vol.34 (7)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3</citedby><cites>FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3</cites><orcidid>0000-0002-3380-4561 ; 0000-0002-1280-9881 ; 0000-0002-4702-6473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Samuel, Roshan</creatorcontrib><creatorcontrib>Samtaney, Ravi</creatorcontrib><creatorcontrib>Verma, Mahendra K.</creatorcontrib><title>Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers</title><title>Physics of fluids (1994)</title><description>We adopt the stretched spiral vortex sub-grid model for large-eddy simulation (LES) of turbulent convection at extreme Rayleigh numbers. We simulate Rayleigh–Bénard convection (RBC) for Rayleigh numbers ranging from 106 to 1015 and for Prandtl numbers 0.768 and 1. We choose a box of dimensions 1:1:10 to reduce computational cost. Our LES yields Nusselt and Reynolds numbers that are in good agreement with the direct-numerical simulation (DNS) results of Iyer et al. [“Classical 1/3 scaling of convection holds up to Ra = 10 15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)] albeit with a smaller grid size and at significantly reduced computational expense. For example, in our simulations at R a = 10 13, we use grids that are 1/120 times the grid resolution as that of the DNS [Iyer et al., “Classical 1/3 scaling of convection holds up to Ra = 10 15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)]. The Reynolds numbers in our simulations span 3 orders of magnitude from 1000 to 1 700 000. Consistent with the literature, we obtain scaling relations for Nusselt and Reynolds numbers as N u ∼ R a 0.321 and R e ∼ R a 0.495. We also perform LES of RBC with periodic side walls, for which we obtain the corresponding scaling exponents as 0.343 and 0.477, respectively. Our LES is a promising tool to push simulations of thermal convection to extreme Rayleigh numbers and, hence, enable us to test the transition to the ultimate convection regime.</description><subject>Computing costs</subject><subject>Extreme values</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Rayleigh-Benard convection</subject><subject>Reynolds number</subject><subject>Scaling</subject><subject>Simulation</subject><subject>Thermal simulation</subject><subject>Vortices</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1KxDAUwPEgCo6jC29QcKXQ8aVpkslSB79gQBh0HdLkdewwbcekFbvzDp7Cc3gTT2LnA5eu8hY_3iN_Qk4pjCgIdslHAEopqfbIgMJYxVIIsb-eJcRCMHpIjkJYAABTiRiQ2dT4OcboXBeFomyXpinqKqrzaGa6JRbzl5-Pz-vvr8p4F9m6ekO7AaaJ8L3xWOIfjKq2zNCHY3KQm2XAk907JM-3N0-T-3j6ePcwuZrGliWyiWmSoUkQpRUZc6mUADaljItMAO9_wJw0TCqQCt0YOHcpdz3hLqO5YzmyITnb7l35-rXF0OhF3fqqP6kTodK-BmNpr863yvo6BI-5XvmiNL7TFPQ6meZ6l6y3F1sbbNFsQvyDfwFHiWyu</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Samuel, Roshan</creator><creator>Samtaney, Ravi</creator><creator>Verma, Mahendra K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3380-4561</orcidid><orcidid>https://orcid.org/0000-0002-1280-9881</orcidid><orcidid>https://orcid.org/0000-0002-4702-6473</orcidid></search><sort><creationdate>202207</creationdate><title>Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers</title><author>Samuel, Roshan ; Samtaney, Ravi ; Verma, Mahendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computing costs</topic><topic>Extreme values</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Rayleigh-Benard convection</topic><topic>Reynolds number</topic><topic>Scaling</topic><topic>Simulation</topic><topic>Thermal simulation</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samuel, Roshan</creatorcontrib><creatorcontrib>Samtaney, Ravi</creatorcontrib><creatorcontrib>Verma, Mahendra K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samuel, Roshan</au><au>Samtaney, Ravi</au><au>Verma, Mahendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-07</date><risdate>2022</risdate><volume>34</volume><issue>7</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We adopt the stretched spiral vortex sub-grid model for large-eddy simulation (LES) of turbulent convection at extreme Rayleigh numbers. We simulate Rayleigh–Bénard convection (RBC) for Rayleigh numbers ranging from 106 to 1015 and for Prandtl numbers 0.768 and 1. We choose a box of dimensions 1:1:10 to reduce computational cost. Our LES yields Nusselt and Reynolds numbers that are in good agreement with the direct-numerical simulation (DNS) results of Iyer et al. [“Classical 1/3 scaling of convection holds up to Ra = 10 15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)] albeit with a smaller grid size and at significantly reduced computational expense. For example, in our simulations at R a = 10 13, we use grids that are 1/120 times the grid resolution as that of the DNS [Iyer et al., “Classical 1/3 scaling of convection holds up to Ra = 10 15,” Proc. Natl. Acad. Sci. U. S. A. 117, 7594–7598 (2020)]. The Reynolds numbers in our simulations span 3 orders of magnitude from 1000 to 1 700 000. Consistent with the literature, we obtain scaling relations for Nusselt and Reynolds numbers as N u ∼ R a 0.321 and R e ∼ R a 0.495. We also perform LES of RBC with periodic side walls, for which we obtain the corresponding scaling exponents as 0.343 and 0.477, respectively. Our LES is a promising tool to push simulations of thermal convection to extreme Rayleigh numbers and, hence, enable us to test the transition to the ultimate convection regime.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0099979</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3380-4561</orcidid><orcidid>https://orcid.org/0000-0002-1280-9881</orcidid><orcidid>https://orcid.org/0000-0002-4702-6473</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-07, Vol.34 (7)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0099979
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Computing costs
Extreme values
Fluid dynamics
Fluid flow
Free convection
Large eddy simulation
Mathematical models
Physics
Rayleigh-Benard convection
Reynolds number
Scaling
Simulation
Thermal simulation
Vortices
title Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-eddy%20simulation%20of%20Rayleigh%E2%80%93B%C3%A9nard%20convection%20at%20extreme%20Rayleigh%20numbers&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Samuel,%20Roshan&rft.date=2022-07&rft.volume=34&rft.issue=7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0099979&rft_dat=%3Cproquest_scita%3E2694063334%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-12bea2ee7c6b3d47700c41356b6059973d7a379079ed8055d45d00c5db1fd3fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694063334&rft_id=info:pmid/&rfr_iscdi=true