Loading…
CH4 transport in micro–nano porous media associated with supercritical CO2 flooding
Injecting supercritical CO2 into tight gas reservoirs to displace CH4 is an extremely promising technology of unconventional gas exploitation. However, Darcy's law cannot describe the gas flow due to ultra-low permeability and micro–nano porosity of tight rock. The present work is an analytical...
Saved in:
Published in: | Physics of fluids (1994) 2022-07, Vol.34 (7) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Injecting supercritical CO2 into tight gas reservoirs to displace CH4 is an extremely promising technology of unconventional gas exploitation. However, Darcy's law cannot describe the gas flow due to ultra-low permeability and micro–nano porosity of tight rock. The present work is an analytical approach to investigating the nonlinear seepage characteristics of CH4 displacement by supercritical CO2. Moreover, considering the steady and unsteady state conditions, mathematical models for planar linear flooding, planar radial flooding, and single well and one-well injection/one-well production types are presented, computed, and verified. Their equipotential and streamline charts are first determined by implementing the model. Additionally, by investigating variables such as formation pressure, producing pressure drop, permeability, temperature, well spacing, and mass flow, their contributions to gas production rate are determined. Finally, an approach for improving the gas recovery efficiency is obtained based on the obtained results. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0100762 |