Loading…

Modification of lithium source in LiBOB salt of LiTFSI-LiBOB electrolyte to improve lithium-ion battery performance

Lithium bis(trifluoromethanesulfonyl)imide [LiTFSI, LiN(CF3SO2)2] can be used as an alternative electrolyte salt in Li-ion battery to replace LiPF6 because it has good tolerance to moisture and is thermally stable. However, LiTFSI can cause corrosion to current collectors in Li-ion batteries. To sup...

Full description

Saved in:
Bibliographic Details
Main Authors: Zakiyyah, Salsabila, Lestariningsih, Titik, Rifai, Abdulloh, Ratri, ChristinRina, Sabrina, Qolby, Subhan, Achmad, Priyono, Slamet, Dzulqornain, Muhammad, Izha, Muchtazar Yusril
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2652
creator Zakiyyah, Salsabila
Lestariningsih, Titik
Rifai, Abdulloh
Ratri, ChristinRina
Sabrina, Qolby
Subhan, Achmad
Priyono, Slamet
Dzulqornain, Muhammad
Izha, Muchtazar Yusril
description Lithium bis(trifluoromethanesulfonyl)imide [LiTFSI, LiN(CF3SO2)2] can be used as an alternative electrolyte salt in Li-ion battery to replace LiPF6 because it has good tolerance to moisture and is thermally stable. However, LiTFSI can cause corrosion to current collectors in Li-ion batteries. To suppress the corrosion rate, mixing LiTFSI with LiBOB salt [lithium bis(oxalato)borate, LiB(C2O4)2] has been recommended. This study aims to determine the effect of different LiBOB salt on Li-ion battery performance. In this study, three types of LiBOB are used: i.e., commercial LiBOB (PA), LiBOB2 synthesized with lithium source from LiOH (PA), and LiBOB5 synthesized by substitution of lithium source using Li2CO3 and brine water (technical grade). Based on the cyclic voltammetry (CV) test results, the current value in the sample mixed with LiBOB is lower than that without LiBOB. The decrease occurs from about 1 mA in the LiTFSI to 0.5 mA, and 0.1 mA in the LiTFSI-LiBOB2 (Mix 2), LiTFSI-LiBOB5 (Mix 3), and commercial LiTFSI-LiBOB (Mix 1), respectively. This result shows that LiBOB addition as co-salt in the LiTFSI electrolyte reduces Cu corrosion. In contrast to the CV results, the results of the charge-discharge (CD) test show that Mix 1 produces the lowest capacity (about 70 mAH/g), while the highest capacity value is produced by Mix 3 (about 104 mAH/g). Based on the results of the electrochemical impedance spectroscopy (EIS), the highest conductivity is produced by Mix 2 (0.0674 mS/cm), while Mix 1 produces the lowest (0.0388 mS/cm).
doi_str_mv 10.1063/5.0107428
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0107428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736031051</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2038-dc81da5d63250b938344fe2eceac7c0accc53c0e9cd286bf983c6f75186c8c213</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1H5ts9miL1cJKD1bwtqSzWUzZ3axJWui_t2sr3jwNzDy8M_MgdEvJhBLJH8SEUJKlTJ2hERWCJpmk8hyNCMnThKX84xJdhbAhhOVZpkYovLrK1hZ0tK7DrsaNjZ922-Lgth4Mth0u7HQ5xUE3cZgXdjV_WyTHpmkMRO-afTQ4Omzb3rud-c1Ihsi1jtH4Pe6Nr51vdQfmGl3Uugnm5lTH6H3-tJq9JMXyeTF7LJKeEa6SChSttKgkZ4Ksc654mtaGGTAaMiAaAAQHYnKomJLrOlccZJ0JqiQoYJSP0d0x93DV19aEWG4OT3WHlSXLuCScEjFQ90cqgI0_Gsre21b7fUlJOUgtRXmS-h-8c_4PLPuq5t-UAXi5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2736031051</pqid></control><display><type>conference_proceeding</type><title>Modification of lithium source in LiBOB salt of LiTFSI-LiBOB electrolyte to improve lithium-ion battery performance</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Zakiyyah, Salsabila ; Lestariningsih, Titik ; Rifai, Abdulloh ; Ratri, ChristinRina ; Sabrina, Qolby ; Subhan, Achmad ; Priyono, Slamet ; Dzulqornain, Muhammad ; Izha, Muchtazar Yusril</creator><contributor>Khaerudini, Deni Shidqi ; Timuda, Gerald Ensang ; Fauzi, Mohammad Hamzah ; Shiddiq, Muhandis ; Hardiansyah, Andri ; Hasib, Mohammad ; Wella, Sasfan Arman ; Nugraha, Ahmad Ridwan T. ; Suprayoga, Edi ; Mustofa, Salim ; Putri, Witha Berlian Kesuma ; Kholili, M. Jauhar ; Saputri, Wahyu Dita ; Ariwahjoedi, Seramika ; Adam, Apriadi Salim ; Hanto, Dwi ; Sunnardiarto, Gagus Ketut ; Syuhada ; Herbani, Yuliati ; Sugiarto, Iyon Titok</contributor><creatorcontrib>Zakiyyah, Salsabila ; Lestariningsih, Titik ; Rifai, Abdulloh ; Ratri, ChristinRina ; Sabrina, Qolby ; Subhan, Achmad ; Priyono, Slamet ; Dzulqornain, Muhammad ; Izha, Muchtazar Yusril ; Khaerudini, Deni Shidqi ; Timuda, Gerald Ensang ; Fauzi, Mohammad Hamzah ; Shiddiq, Muhandis ; Hardiansyah, Andri ; Hasib, Mohammad ; Wella, Sasfan Arman ; Nugraha, Ahmad Ridwan T. ; Suprayoga, Edi ; Mustofa, Salim ; Putri, Witha Berlian Kesuma ; Kholili, M. Jauhar ; Saputri, Wahyu Dita ; Ariwahjoedi, Seramika ; Adam, Apriadi Salim ; Hanto, Dwi ; Sunnardiarto, Gagus Ketut ; Syuhada ; Herbani, Yuliati ; Sugiarto, Iyon Titok</creatorcontrib><description>Lithium bis(trifluoromethanesulfonyl)imide [LiTFSI, LiN(CF3SO2)2] can be used as an alternative electrolyte salt in Li-ion battery to replace LiPF6 because it has good tolerance to moisture and is thermally stable. However, LiTFSI can cause corrosion to current collectors in Li-ion batteries. To suppress the corrosion rate, mixing LiTFSI with LiBOB salt [lithium bis(oxalato)borate, LiB(C2O4)2] has been recommended. This study aims to determine the effect of different LiBOB salt on Li-ion battery performance. In this study, three types of LiBOB are used: i.e., commercial LiBOB (PA), LiBOB2 synthesized with lithium source from LiOH (PA), and LiBOB5 synthesized by substitution of lithium source using Li2CO3 and brine water (technical grade). Based on the cyclic voltammetry (CV) test results, the current value in the sample mixed with LiBOB is lower than that without LiBOB. The decrease occurs from about 1 mA in the LiTFSI to 0.5 mA, and 0.1 mA in the LiTFSI-LiBOB2 (Mix 2), LiTFSI-LiBOB5 (Mix 3), and commercial LiTFSI-LiBOB (Mix 1), respectively. This result shows that LiBOB addition as co-salt in the LiTFSI electrolyte reduces Cu corrosion. In contrast to the CV results, the results of the charge-discharge (CD) test show that Mix 1 produces the lowest capacity (about 70 mAH/g), while the highest capacity value is produced by Mix 3 (about 104 mAH/g). Based on the results of the electrochemical impedance spectroscopy (EIS), the highest conductivity is produced by Mix 2 (0.0674 mS/cm), while Mix 1 produces the lowest (0.0388 mS/cm).</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0107428</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Copper ; Corrosion ; Corrosion rate ; Electrochemical impedance spectroscopy ; Electrolytes ; Lithium ; Lithium-ion batteries ; Moisture effects ; Rechargeable batteries ; Synthesis ; Thermal stability</subject><ispartof>AIP conference proceedings, 2022, Vol.2652 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Khaerudini, Deni Shidqi</contributor><contributor>Timuda, Gerald Ensang</contributor><contributor>Fauzi, Mohammad Hamzah</contributor><contributor>Shiddiq, Muhandis</contributor><contributor>Hardiansyah, Andri</contributor><contributor>Hasib, Mohammad</contributor><contributor>Wella, Sasfan Arman</contributor><contributor>Nugraha, Ahmad Ridwan T.</contributor><contributor>Suprayoga, Edi</contributor><contributor>Mustofa, Salim</contributor><contributor>Putri, Witha Berlian Kesuma</contributor><contributor>Kholili, M. Jauhar</contributor><contributor>Saputri, Wahyu Dita</contributor><contributor>Ariwahjoedi, Seramika</contributor><contributor>Adam, Apriadi Salim</contributor><contributor>Hanto, Dwi</contributor><contributor>Sunnardiarto, Gagus Ketut</contributor><contributor>Syuhada</contributor><contributor>Herbani, Yuliati</contributor><contributor>Sugiarto, Iyon Titok</contributor><creatorcontrib>Zakiyyah, Salsabila</creatorcontrib><creatorcontrib>Lestariningsih, Titik</creatorcontrib><creatorcontrib>Rifai, Abdulloh</creatorcontrib><creatorcontrib>Ratri, ChristinRina</creatorcontrib><creatorcontrib>Sabrina, Qolby</creatorcontrib><creatorcontrib>Subhan, Achmad</creatorcontrib><creatorcontrib>Priyono, Slamet</creatorcontrib><creatorcontrib>Dzulqornain, Muhammad</creatorcontrib><creatorcontrib>Izha, Muchtazar Yusril</creatorcontrib><title>Modification of lithium source in LiBOB salt of LiTFSI-LiBOB electrolyte to improve lithium-ion battery performance</title><title>AIP conference proceedings</title><description>Lithium bis(trifluoromethanesulfonyl)imide [LiTFSI, LiN(CF3SO2)2] can be used as an alternative electrolyte salt in Li-ion battery to replace LiPF6 because it has good tolerance to moisture and is thermally stable. However, LiTFSI can cause corrosion to current collectors in Li-ion batteries. To suppress the corrosion rate, mixing LiTFSI with LiBOB salt [lithium bis(oxalato)borate, LiB(C2O4)2] has been recommended. This study aims to determine the effect of different LiBOB salt on Li-ion battery performance. In this study, three types of LiBOB are used: i.e., commercial LiBOB (PA), LiBOB2 synthesized with lithium source from LiOH (PA), and LiBOB5 synthesized by substitution of lithium source using Li2CO3 and brine water (technical grade). Based on the cyclic voltammetry (CV) test results, the current value in the sample mixed with LiBOB is lower than that without LiBOB. The decrease occurs from about 1 mA in the LiTFSI to 0.5 mA, and 0.1 mA in the LiTFSI-LiBOB2 (Mix 2), LiTFSI-LiBOB5 (Mix 3), and commercial LiTFSI-LiBOB (Mix 1), respectively. This result shows that LiBOB addition as co-salt in the LiTFSI electrolyte reduces Cu corrosion. In contrast to the CV results, the results of the charge-discharge (CD) test show that Mix 1 produces the lowest capacity (about 70 mAH/g), while the highest capacity value is produced by Mix 3 (about 104 mAH/g). Based on the results of the electrochemical impedance spectroscopy (EIS), the highest conductivity is produced by Mix 2 (0.0674 mS/cm), while Mix 1 produces the lowest (0.0388 mS/cm).</description><subject>Copper</subject><subject>Corrosion</subject><subject>Corrosion rate</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrolytes</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Moisture effects</subject><subject>Rechargeable batteries</subject><subject>Synthesis</subject><subject>Thermal stability</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1H5ts9miL1cJKD1bwtqSzWUzZ3axJWui_t2sr3jwNzDy8M_MgdEvJhBLJH8SEUJKlTJ2hERWCJpmk8hyNCMnThKX84xJdhbAhhOVZpkYovLrK1hZ0tK7DrsaNjZ922-Lgth4Mth0u7HQ5xUE3cZgXdjV_WyTHpmkMRO-afTQ4Omzb3rud-c1Ihsi1jtH4Pe6Nr51vdQfmGl3Uugnm5lTH6H3-tJq9JMXyeTF7LJKeEa6SChSttKgkZ4Ksc654mtaGGTAaMiAaAAQHYnKomJLrOlccZJ0JqiQoYJSP0d0x93DV19aEWG4OT3WHlSXLuCScEjFQ90cqgI0_Gsre21b7fUlJOUgtRXmS-h-8c_4PLPuq5t-UAXi5</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Zakiyyah, Salsabila</creator><creator>Lestariningsih, Titik</creator><creator>Rifai, Abdulloh</creator><creator>Ratri, ChristinRina</creator><creator>Sabrina, Qolby</creator><creator>Subhan, Achmad</creator><creator>Priyono, Slamet</creator><creator>Dzulqornain, Muhammad</creator><creator>Izha, Muchtazar Yusril</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221114</creationdate><title>Modification of lithium source in LiBOB salt of LiTFSI-LiBOB electrolyte to improve lithium-ion battery performance</title><author>Zakiyyah, Salsabila ; Lestariningsih, Titik ; Rifai, Abdulloh ; Ratri, ChristinRina ; Sabrina, Qolby ; Subhan, Achmad ; Priyono, Slamet ; Dzulqornain, Muhammad ; Izha, Muchtazar Yusril</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2038-dc81da5d63250b938344fe2eceac7c0accc53c0e9cd286bf983c6f75186c8c213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Copper</topic><topic>Corrosion</topic><topic>Corrosion rate</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrolytes</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Moisture effects</topic><topic>Rechargeable batteries</topic><topic>Synthesis</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakiyyah, Salsabila</creatorcontrib><creatorcontrib>Lestariningsih, Titik</creatorcontrib><creatorcontrib>Rifai, Abdulloh</creatorcontrib><creatorcontrib>Ratri, ChristinRina</creatorcontrib><creatorcontrib>Sabrina, Qolby</creatorcontrib><creatorcontrib>Subhan, Achmad</creatorcontrib><creatorcontrib>Priyono, Slamet</creatorcontrib><creatorcontrib>Dzulqornain, Muhammad</creatorcontrib><creatorcontrib>Izha, Muchtazar Yusril</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakiyyah, Salsabila</au><au>Lestariningsih, Titik</au><au>Rifai, Abdulloh</au><au>Ratri, ChristinRina</au><au>Sabrina, Qolby</au><au>Subhan, Achmad</au><au>Priyono, Slamet</au><au>Dzulqornain, Muhammad</au><au>Izha, Muchtazar Yusril</au><au>Khaerudini, Deni Shidqi</au><au>Timuda, Gerald Ensang</au><au>Fauzi, Mohammad Hamzah</au><au>Shiddiq, Muhandis</au><au>Hardiansyah, Andri</au><au>Hasib, Mohammad</au><au>Wella, Sasfan Arman</au><au>Nugraha, Ahmad Ridwan T.</au><au>Suprayoga, Edi</au><au>Mustofa, Salim</au><au>Putri, Witha Berlian Kesuma</au><au>Kholili, M. Jauhar</au><au>Saputri, Wahyu Dita</au><au>Ariwahjoedi, Seramika</au><au>Adam, Apriadi Salim</au><au>Hanto, Dwi</au><au>Sunnardiarto, Gagus Ketut</au><au>Syuhada</au><au>Herbani, Yuliati</au><au>Sugiarto, Iyon Titok</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modification of lithium source in LiBOB salt of LiTFSI-LiBOB electrolyte to improve lithium-ion battery performance</atitle><btitle>AIP conference proceedings</btitle><date>2022-11-14</date><risdate>2022</risdate><volume>2652</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Lithium bis(trifluoromethanesulfonyl)imide [LiTFSI, LiN(CF3SO2)2] can be used as an alternative electrolyte salt in Li-ion battery to replace LiPF6 because it has good tolerance to moisture and is thermally stable. However, LiTFSI can cause corrosion to current collectors in Li-ion batteries. To suppress the corrosion rate, mixing LiTFSI with LiBOB salt [lithium bis(oxalato)borate, LiB(C2O4)2] has been recommended. This study aims to determine the effect of different LiBOB salt on Li-ion battery performance. In this study, three types of LiBOB are used: i.e., commercial LiBOB (PA), LiBOB2 synthesized with lithium source from LiOH (PA), and LiBOB5 synthesized by substitution of lithium source using Li2CO3 and brine water (technical grade). Based on the cyclic voltammetry (CV) test results, the current value in the sample mixed with LiBOB is lower than that without LiBOB. The decrease occurs from about 1 mA in the LiTFSI to 0.5 mA, and 0.1 mA in the LiTFSI-LiBOB2 (Mix 2), LiTFSI-LiBOB5 (Mix 3), and commercial LiTFSI-LiBOB (Mix 1), respectively. This result shows that LiBOB addition as co-salt in the LiTFSI electrolyte reduces Cu corrosion. In contrast to the CV results, the results of the charge-discharge (CD) test show that Mix 1 produces the lowest capacity (about 70 mAH/g), while the highest capacity value is produced by Mix 3 (about 104 mAH/g). Based on the results of the electrochemical impedance spectroscopy (EIS), the highest conductivity is produced by Mix 2 (0.0674 mS/cm), while Mix 1 produces the lowest (0.0388 mS/cm).</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0107428</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2652 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0107428
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Copper
Corrosion
Corrosion rate
Electrochemical impedance spectroscopy
Electrolytes
Lithium
Lithium-ion batteries
Moisture effects
Rechargeable batteries
Synthesis
Thermal stability
title Modification of lithium source in LiBOB salt of LiTFSI-LiBOB electrolyte to improve lithium-ion battery performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modification%20of%20lithium%20source%20in%20LiBOB%20salt%20of%20LiTFSI-LiBOB%20electrolyte%20to%20improve%20lithium-ion%20battery%20performance&rft.btitle=AIP%20conference%20proceedings&rft.au=Zakiyyah,%20Salsabila&rft.date=2022-11-14&rft.volume=2652&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0107428&rft_dat=%3Cproquest_scita%3E2736031051%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2038-dc81da5d63250b938344fe2eceac7c0accc53c0e9cd286bf983c6f75186c8c213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2736031051&rft_id=info:pmid/&rfr_iscdi=true