Loading…

Study of water quality parameters in Bhavani river, Tamilnadu, India, using multivariate statistical techniques

In the present study, water quality parameters of samples drawn from various locations of Bhavani River, Tamilnadu, India is analyzed using multivariate statistical analysis. Descriptive Statistics for various water quality parameters namely Calcium, Magnesium, Sodium, Potassium, Bicarbonate, Chlori...

Full description

Saved in:
Bibliographic Details
Main Authors: Begum, A. Shamadhani, Ramakrishnan, K.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2516
creator Begum, A. Shamadhani
Ramakrishnan, K.
description In the present study, water quality parameters of samples drawn from various locations of Bhavani River, Tamilnadu, India is analyzed using multivariate statistical analysis. Descriptive Statistics for various water quality parameters namely Calcium, Magnesium, Sodium, Potassium, Bicarbonate, Chloride and Sulfate under consideration is calculated. Linear Regression model is developed for the parameters having high significant level of correlation. Control limits have been found for each parameters and its significant is discussed in detail. To understand the variation within and between the samples, analysis of variation is carried out for each water quality parameter at one-way classification. Finally, factor analysis is done for understanding the role of each parameters even they are not have good agreement with others and results obtained by various statistical tools are compared.
doi_str_mv 10.1063/5.0109465
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0109465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742739246</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2035-89fb697cb3e3978f7245b4e0ed054ed5cb5a7d873ee9d234fb1f0ea01174b6ee3</originalsourceid><addsrcrecordid>eNp9kM1LwzAAxYMoOKcH_4OAN1lnPpv2qMOPwcCDE7yFtEldRpt2SVrZf2_HBt48PXj8eO_xALjFaI5RSh_4HGGUs5SfgQnmHCcixek5mKDRTAijX5fgKoQtQiQXIpuA9iP2eg_bCv6oaDzc9aq2cQ875VVjRidA6-DTRg3KWejtYPwMrlVja6d0P4NLp62awT5Y9w2bvo52UN6OUTBEFW2ItlQ1jKbcOLvrTbgGF5Wqg7k56RR8vjyvF2_J6v11uXhcJR1BlCdZXhVpLsqCGpqLrBKE8YIZZDTizGheFlwJnQlqTK4JZVWBK2QUwliwIjWGTsHdMbfz7aE3ym3bezdWSiIYETQnLB2p-yMVSnuY2zrZedsov5cYycOhksvTof_BQ-v_QNnpiv4CtK54Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2742739246</pqid></control><display><type>conference_proceeding</type><title>Study of water quality parameters in Bhavani river, Tamilnadu, India, using multivariate statistical techniques</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Begum, A. Shamadhani ; Ramakrishnan, K.</creator><contributor>Vennila, B. ; Siva, E.P. ; KATIYAR, SAURABH KUMAR ; Pullepu, Babuji</contributor><creatorcontrib>Begum, A. Shamadhani ; Ramakrishnan, K. ; Vennila, B. ; Siva, E.P. ; KATIYAR, SAURABH KUMAR ; Pullepu, Babuji</creatorcontrib><description>In the present study, water quality parameters of samples drawn from various locations of Bhavani River, Tamilnadu, India is analyzed using multivariate statistical analysis. Descriptive Statistics for various water quality parameters namely Calcium, Magnesium, Sodium, Potassium, Bicarbonate, Chloride and Sulfate under consideration is calculated. Linear Regression model is developed for the parameters having high significant level of correlation. Control limits have been found for each parameters and its significant is discussed in detail. To understand the variation within and between the samples, analysis of variation is carried out for each water quality parameter at one-way classification. Finally, factor analysis is done for understanding the role of each parameters even they are not have good agreement with others and results obtained by various statistical tools are compared.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0109465</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bicarbonates ; Control limits ; Factor analysis ; Magnesium ; Multivariate analysis ; Multivariate statistical analysis ; Parameters ; Regression models ; Samples ; Statistical analysis ; Water quality</subject><ispartof>AIP conference proceedings, 2022, Vol.2516 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Vennila, B.</contributor><contributor>Siva, E.P.</contributor><contributor>KATIYAR, SAURABH KUMAR</contributor><contributor>Pullepu, Babuji</contributor><creatorcontrib>Begum, A. Shamadhani</creatorcontrib><creatorcontrib>Ramakrishnan, K.</creatorcontrib><title>Study of water quality parameters in Bhavani river, Tamilnadu, India, using multivariate statistical techniques</title><title>AIP conference proceedings</title><description>In the present study, water quality parameters of samples drawn from various locations of Bhavani River, Tamilnadu, India is analyzed using multivariate statistical analysis. Descriptive Statistics for various water quality parameters namely Calcium, Magnesium, Sodium, Potassium, Bicarbonate, Chloride and Sulfate under consideration is calculated. Linear Regression model is developed for the parameters having high significant level of correlation. Control limits have been found for each parameters and its significant is discussed in detail. To understand the variation within and between the samples, analysis of variation is carried out for each water quality parameter at one-way classification. Finally, factor analysis is done for understanding the role of each parameters even they are not have good agreement with others and results obtained by various statistical tools are compared.</description><subject>Bicarbonates</subject><subject>Control limits</subject><subject>Factor analysis</subject><subject>Magnesium</subject><subject>Multivariate analysis</subject><subject>Multivariate statistical analysis</subject><subject>Parameters</subject><subject>Regression models</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Water quality</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1LwzAAxYMoOKcH_4OAN1lnPpv2qMOPwcCDE7yFtEldRpt2SVrZf2_HBt48PXj8eO_xALjFaI5RSh_4HGGUs5SfgQnmHCcixek5mKDRTAijX5fgKoQtQiQXIpuA9iP2eg_bCv6oaDzc9aq2cQ875VVjRidA6-DTRg3KWejtYPwMrlVja6d0P4NLp62awT5Y9w2bvo52UN6OUTBEFW2ItlQ1jKbcOLvrTbgGF5Wqg7k56RR8vjyvF2_J6v11uXhcJR1BlCdZXhVpLsqCGpqLrBKE8YIZZDTizGheFlwJnQlqTK4JZVWBK2QUwliwIjWGTsHdMbfz7aE3ym3bezdWSiIYETQnLB2p-yMVSnuY2zrZedsov5cYycOhksvTof_BQ-v_QNnpiv4CtK54Zw</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Begum, A. Shamadhani</creator><creator>Ramakrishnan, K.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221130</creationdate><title>Study of water quality parameters in Bhavani river, Tamilnadu, India, using multivariate statistical techniques</title><author>Begum, A. Shamadhani ; Ramakrishnan, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2035-89fb697cb3e3978f7245b4e0ed054ed5cb5a7d873ee9d234fb1f0ea01174b6ee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bicarbonates</topic><topic>Control limits</topic><topic>Factor analysis</topic><topic>Magnesium</topic><topic>Multivariate analysis</topic><topic>Multivariate statistical analysis</topic><topic>Parameters</topic><topic>Regression models</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Begum, A. Shamadhani</creatorcontrib><creatorcontrib>Ramakrishnan, K.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Begum, A. Shamadhani</au><au>Ramakrishnan, K.</au><au>Vennila, B.</au><au>Siva, E.P.</au><au>KATIYAR, SAURABH KUMAR</au><au>Pullepu, Babuji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study of water quality parameters in Bhavani river, Tamilnadu, India, using multivariate statistical techniques</atitle><btitle>AIP conference proceedings</btitle><date>2022-11-30</date><risdate>2022</risdate><volume>2516</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the present study, water quality parameters of samples drawn from various locations of Bhavani River, Tamilnadu, India is analyzed using multivariate statistical analysis. Descriptive Statistics for various water quality parameters namely Calcium, Magnesium, Sodium, Potassium, Bicarbonate, Chloride and Sulfate under consideration is calculated. Linear Regression model is developed for the parameters having high significant level of correlation. Control limits have been found for each parameters and its significant is discussed in detail. To understand the variation within and between the samples, analysis of variation is carried out for each water quality parameter at one-way classification. Finally, factor analysis is done for understanding the role of each parameters even they are not have good agreement with others and results obtained by various statistical tools are compared.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0109465</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2516 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0109465
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Bicarbonates
Control limits
Factor analysis
Magnesium
Multivariate analysis
Multivariate statistical analysis
Parameters
Regression models
Samples
Statistical analysis
Water quality
title Study of water quality parameters in Bhavani river, Tamilnadu, India, using multivariate statistical techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20of%20water%20quality%20parameters%20in%20Bhavani%20river,%20Tamilnadu,%20India,%20using%20multivariate%20statistical%20techniques&rft.btitle=AIP%20conference%20proceedings&rft.au=Begum,%20A.%20Shamadhani&rft.date=2022-11-30&rft.volume=2516&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0109465&rft_dat=%3Cproquest_scita%3E2742739246%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2035-89fb697cb3e3978f7245b4e0ed054ed5cb5a7d873ee9d234fb1f0ea01174b6ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2742739246&rft_id=info:pmid/&rfr_iscdi=true