Loading…
Fixed point convergence and analysis for a new four step iterative scheme
The fixed point iterations have a significant role in attaining the fixed points of the mappings under study and their rate of convergence is one crucial parameter for their role play. This manuscript presents a new iterative scheme in regards to a better converging rate and establishes its fixed-po...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2576 |
creator | Basra, Khushboo Gonder, Surjeet Singh Chauhan |
description | The fixed point iterations have a significant role in attaining the fixed points of the mappings under study and their rate of convergence is one crucial parameter for their role play. This manuscript presents a new iterative scheme in regards to a better converging rate and establishes its fixed-point convergence results under contraction conditions. The results are supported with suitable examples. The analysis of its rate of convergence against some other existing schemes is shown with table values and some figures. |
doi_str_mv | 10.1063/5.0113199 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0113199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2748597325</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1689-3de2ad1f4ed8332fd66facbb57062b6a103fd170d03fb2f0e49734709b181b7b3</originalsourceid><addsrcrecordid>eNotkMFKAzEURYMoWKsL_yDgTpial0ySmaUUq4WCGwV3IZm86JR2Zkym1f69kXbxuG9xuBwuIbfAZsCUeJAzBiCgrs_IBKSEQitQ52TCWF0WvBQfl-QqpTVjvNa6mpDlov1FT4e-7Uba9N0e4yd2DVLb-Xx2c0htoqGP1NIOf_K3izSNONB2xGjHdo80NV-4xWtyEewm4c0pp-R98fQ2fylWr8_L-eOqGEBVdSE8cushlOgrIXjwSgXbOCc1U9wpC0wED5r5nI4HhmWtRalZ7aACp52Ykrtj7xD77x2m0ayzUzZNhuuykhnnMlP3Ryo17Zg1-84Msd3aeDDAzP9URprTVOIPbI5aoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2748597325</pqid></control><display><type>conference_proceeding</type><title>Fixed point convergence and analysis for a new four step iterative scheme</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Basra, Khushboo ; Gonder, Surjeet Singh Chauhan</creator><contributor>Kaur, Sukhdeep ; Bhatia, Vinay ; Tandon, Bhawna ; Singla, Parveen</contributor><creatorcontrib>Basra, Khushboo ; Gonder, Surjeet Singh Chauhan ; Kaur, Sukhdeep ; Bhatia, Vinay ; Tandon, Bhawna ; Singla, Parveen</creatorcontrib><description>The fixed point iterations have a significant role in attaining the fixed points of the mappings under study and their rate of convergence is one crucial parameter for their role play. This manuscript presents a new iterative scheme in regards to a better converging rate and establishes its fixed-point convergence results under contraction conditions. The results are supported with suitable examples. The analysis of its rate of convergence against some other existing schemes is shown with table values and some figures.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0113199</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convergence</subject><ispartof>AIP conference proceedings, 2022, Vol.2576 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Kaur, Sukhdeep</contributor><contributor>Bhatia, Vinay</contributor><contributor>Tandon, Bhawna</contributor><contributor>Singla, Parveen</contributor><creatorcontrib>Basra, Khushboo</creatorcontrib><creatorcontrib>Gonder, Surjeet Singh Chauhan</creatorcontrib><title>Fixed point convergence and analysis for a new four step iterative scheme</title><title>AIP conference proceedings</title><description>The fixed point iterations have a significant role in attaining the fixed points of the mappings under study and their rate of convergence is one crucial parameter for their role play. This manuscript presents a new iterative scheme in regards to a better converging rate and establishes its fixed-point convergence results under contraction conditions. The results are supported with suitable examples. The analysis of its rate of convergence against some other existing schemes is shown with table values and some figures.</description><subject>Convergence</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMFKAzEURYMoWKsL_yDgTpial0ySmaUUq4WCGwV3IZm86JR2Zkym1f69kXbxuG9xuBwuIbfAZsCUeJAzBiCgrs_IBKSEQitQ52TCWF0WvBQfl-QqpTVjvNa6mpDlov1FT4e-7Uba9N0e4yd2DVLb-Xx2c0htoqGP1NIOf_K3izSNONB2xGjHdo80NV-4xWtyEewm4c0pp-R98fQ2fylWr8_L-eOqGEBVdSE8cushlOgrIXjwSgXbOCc1U9wpC0wED5r5nI4HhmWtRalZ7aACp52Ykrtj7xD77x2m0ayzUzZNhuuykhnnMlP3Ryo17Zg1-84Msd3aeDDAzP9URprTVOIPbI5aoQ</recordid><startdate>20221209</startdate><enddate>20221209</enddate><creator>Basra, Khushboo</creator><creator>Gonder, Surjeet Singh Chauhan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221209</creationdate><title>Fixed point convergence and analysis for a new four step iterative scheme</title><author>Basra, Khushboo ; Gonder, Surjeet Singh Chauhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1689-3de2ad1f4ed8332fd66facbb57062b6a103fd170d03fb2f0e49734709b181b7b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basra, Khushboo</creatorcontrib><creatorcontrib>Gonder, Surjeet Singh Chauhan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basra, Khushboo</au><au>Gonder, Surjeet Singh Chauhan</au><au>Kaur, Sukhdeep</au><au>Bhatia, Vinay</au><au>Tandon, Bhawna</au><au>Singla, Parveen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fixed point convergence and analysis for a new four step iterative scheme</atitle><btitle>AIP conference proceedings</btitle><date>2022-12-09</date><risdate>2022</risdate><volume>2576</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The fixed point iterations have a significant role in attaining the fixed points of the mappings under study and their rate of convergence is one crucial parameter for their role play. This manuscript presents a new iterative scheme in regards to a better converging rate and establishes its fixed-point convergence results under contraction conditions. The results are supported with suitable examples. The analysis of its rate of convergence against some other existing schemes is shown with table values and some figures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0113199</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2022, Vol.2576 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0113199 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Convergence |
title | Fixed point convergence and analysis for a new four step iterative scheme |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fixed%20point%20convergence%20and%20analysis%20for%20a%20new%20four%20step%20iterative%20scheme&rft.btitle=AIP%20conference%20proceedings&rft.au=Basra,%20Khushboo&rft.date=2022-12-09&rft.volume=2576&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0113199&rft_dat=%3Cproquest_scita%3E2748597325%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1689-3de2ad1f4ed8332fd66facbb57062b6a103fd170d03fb2f0e49734709b181b7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2748597325&rft_id=info:pmid/&rfr_iscdi=true |