Loading…

Berry curvature induced antisymmetric in-plane magneto-transport in magnetic Weyl EuB6

In-plane transport properties, including anisotropic magnetoresistance (AMR) and planar Hall effect (PHE), are of great interest in electrical transport and spintronic applications. Unconventional transport behavior emerging from the topological physics has been intensively studied and very much des...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2022-10, Vol.121 (16)
Main Authors: Zeng, Qingqi, Yi, Changjiang, Shen, Jianlei, Wang, Binbin, Wei, Hongxiang, Shi, Youguo, Liu, Enke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In-plane transport properties, including anisotropic magnetoresistance (AMR) and planar Hall effect (PHE), are of great interest in electrical transport and spintronic applications. Unconventional transport behavior emerging from the topological physics has been intensively studied and very much desired. In this study, a large AMR of −18% at a very low magnetic field of 0.2 T is observed in a soft magnetic Weyl semimetal EuB6 based on the characteristics of both high magnetization and large magnetoresistance. Furthermore, the intrinsic antisymmetric AMR and PHE are unambiguously observed and interpreted as the modification in conductivity owing to the Berry curvature in a tilted Weyl system instead of the out-of-plane magnetic field component. Our study provides a strategy for low-magnetic-field applications of large AMR and enriches the transport physics of spintronic devices.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0114252