Loading…
Deep learning method for brain tumor identification with multimodal 3D-MRI
In the primary gliomas, the brain tumors be the majority frequent of all types. Both the accurate and detailed delineation of tumor borders are significant for detection, treatment planning, also discovering risk factors this paper presents a brain tumor segmentation system using a deep learning app...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the primary gliomas, the brain tumors be the majority frequent of all types. Both the accurate and detailed delineation of tumor borders are significant for detection, treatment planning, also discovering risk factors this paper presents a brain tumor segmentation system using a deep learning approach. U-net is a new type of deep learning network which has been trained to segment the brain tumors. Essentially, our architecture be a nested, deeply-supervised decoder-encoder-skipper network. We use the BraTS data set as our training data for our model. For all practical purposes, a tumor in the validation dataset must be 0.757, 0.17 also 0.89. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0116910 |