Loading…

Lung cancer prediction using convolutional neural network based VGG19 compared with VGG16 using CT-scan images for accuracy improvement

The main aim of this work is to calculate the accuracy in early prediction of lung cancer using CT images.: The dataset of 989 lung images has been taken from the Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases with 80% of G-power. The proposed method contains image preprocessing...

Full description

Saved in:
Bibliographic Details
Main Authors: Nali, Mohana Krishna, Ramalingam, Puviarasi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2655
creator Nali, Mohana Krishna
Ramalingam, Puviarasi
description The main aim of this work is to calculate the accuracy in early prediction of lung cancer using CT images.: The dataset of 989 lung images has been taken from the Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases with 80% of G-power. The proposed method contains image preprocessing, augmentation and features extraction of images using Convolution Neural Network (CNN) based VGG16 and VGG19 models. Based on training (80%), validation (18%) and testing (2%) of the dataset in python software the accuracy and precision is calculated. A comparative analysis is made between two algorithms using SPSS software. Results : The proposed model CNN-VGG19 produced improved accuracy of 0.9599±0.0217 than VGG 16 with the significance value of
doi_str_mv 10.1063/5.0119177
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0119177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809259577</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-c411579da455028809337ebbf132d545df038d725a3016797e2c16c23dbbdb123</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKcXvkHAO6EzJ2ma5lKGTmHgzRTvQpqks3Nra9Ju7Al8bVM38M6rAz_f-Q7_QegayARIxu74hABIEOIEjYBzSEQG2SkaESLThKbs_RxdhLAihEoh8hH6nvf1EhtdG-dx652tTFc1Ne5DNeRNvW3W_ZDoNa5d739Ht2v8Jy50cBa_zWYgI7hpddzGu6r7-M2yo2K6SELU42qjly7gsvFYGxNFZh-z1jdbt3F1d4nOSr0O7uo4x-j18WExfUrmL7Pn6f08aSHLu8SkAFxIq1POCc1zIhkTrihKYNTylNuSsNwKyjUjkAkpHDWQGcpsUdgCKBujm4M3Xv7qXejUqul9bBcUjTbKJRciUrcHKpiq00N91frYwO8VEDU8WnF1fPR_8Lbxf6Bqbcl-AFMXfxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2809259577</pqid></control><display><type>conference_proceeding</type><title>Lung cancer prediction using convolutional neural network based VGG19 compared with VGG16 using CT-scan images for accuracy improvement</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Nali, Mohana Krishna ; Ramalingam, Puviarasi</creator><contributor>Iqba, Uqbah ; Aravindan, Surendar ; Krit, Salahddine</contributor><creatorcontrib>Nali, Mohana Krishna ; Ramalingam, Puviarasi ; Iqba, Uqbah ; Aravindan, Surendar ; Krit, Salahddine</creatorcontrib><description>The main aim of this work is to calculate the accuracy in early prediction of lung cancer using CT images.: The dataset of 989 lung images has been taken from the Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases with 80% of G-power. The proposed method contains image preprocessing, augmentation and features extraction of images using Convolution Neural Network (CNN) based VGG16 and VGG19 models. Based on training (80%), validation (18%) and testing (2%) of the dataset in python software the accuracy and precision is calculated. A comparative analysis is made between two algorithms using SPSS software. Results : The proposed model CNN-VGG19 produced improved accuracy of 0.9599±0.0217 than VGG 16 with the significance value of &lt;0.05It would be prudent that the proposed CNN-VGG-19 model produced high accuracy (%) results compared with CNN-VGG16 model.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0119177</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Computed tomography ; Datasets ; Medical imaging ; Model accuracy ; Software</subject><ispartof>AIP conference proceedings, 2023, Vol.2655 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23928,23929,25138,27922,27923</link.rule.ids></links><search><contributor>Iqba, Uqbah</contributor><contributor>Aravindan, Surendar</contributor><contributor>Krit, Salahddine</contributor><creatorcontrib>Nali, Mohana Krishna</creatorcontrib><creatorcontrib>Ramalingam, Puviarasi</creatorcontrib><title>Lung cancer prediction using convolutional neural network based VGG19 compared with VGG16 using CT-scan images for accuracy improvement</title><title>AIP conference proceedings</title><description>The main aim of this work is to calculate the accuracy in early prediction of lung cancer using CT images.: The dataset of 989 lung images has been taken from the Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases with 80% of G-power. The proposed method contains image preprocessing, augmentation and features extraction of images using Convolution Neural Network (CNN) based VGG16 and VGG19 models. Based on training (80%), validation (18%) and testing (2%) of the dataset in python software the accuracy and precision is calculated. A comparative analysis is made between two algorithms using SPSS software. Results : The proposed model CNN-VGG19 produced improved accuracy of 0.9599±0.0217 than VGG 16 with the significance value of &lt;0.05It would be prudent that the proposed CNN-VGG-19 model produced high accuracy (%) results compared with CNN-VGG16 model.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>Datasets</subject><subject>Medical imaging</subject><subject>Model accuracy</subject><subject>Software</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kNFKwzAUhoMoOKcXvkHAO6EzJ2ma5lKGTmHgzRTvQpqks3Nra9Ju7Al8bVM38M6rAz_f-Q7_QegayARIxu74hABIEOIEjYBzSEQG2SkaESLThKbs_RxdhLAihEoh8hH6nvf1EhtdG-dx652tTFc1Ne5DNeRNvW3W_ZDoNa5d739Ht2v8Jy50cBa_zWYgI7hpddzGu6r7-M2yo2K6SELU42qjly7gsvFYGxNFZh-z1jdbt3F1d4nOSr0O7uo4x-j18WExfUrmL7Pn6f08aSHLu8SkAFxIq1POCc1zIhkTrihKYNTylNuSsNwKyjUjkAkpHDWQGcpsUdgCKBujm4M3Xv7qXejUqul9bBcUjTbKJRciUrcHKpiq00N91frYwO8VEDU8WnF1fPR_8Lbxf6Bqbcl-AFMXfxo</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Nali, Mohana Krishna</creator><creator>Ramalingam, Puviarasi</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230504</creationdate><title>Lung cancer prediction using convolutional neural network based VGG19 compared with VGG16 using CT-scan images for accuracy improvement</title><author>Nali, Mohana Krishna ; Ramalingam, Puviarasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-c411579da455028809337ebbf132d545df038d725a3016797e2c16c23dbbdb123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>Datasets</topic><topic>Medical imaging</topic><topic>Model accuracy</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nali, Mohana Krishna</creatorcontrib><creatorcontrib>Ramalingam, Puviarasi</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nali, Mohana Krishna</au><au>Ramalingam, Puviarasi</au><au>Iqba, Uqbah</au><au>Aravindan, Surendar</au><au>Krit, Salahddine</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lung cancer prediction using convolutional neural network based VGG19 compared with VGG16 using CT-scan images for accuracy improvement</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-04</date><risdate>2023</risdate><volume>2655</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The main aim of this work is to calculate the accuracy in early prediction of lung cancer using CT images.: The dataset of 989 lung images has been taken from the Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases with 80% of G-power. The proposed method contains image preprocessing, augmentation and features extraction of images using Convolution Neural Network (CNN) based VGG16 and VGG19 models. Based on training (80%), validation (18%) and testing (2%) of the dataset in python software the accuracy and precision is calculated. A comparative analysis is made between two algorithms using SPSS software. Results : The proposed model CNN-VGG19 produced improved accuracy of 0.9599±0.0217 than VGG 16 with the significance value of &lt;0.05It would be prudent that the proposed CNN-VGG-19 model produced high accuracy (%) results compared with CNN-VGG16 model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0119177</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2655 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0119177
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Artificial neural networks
Computed tomography
Datasets
Medical imaging
Model accuracy
Software
title Lung cancer prediction using convolutional neural network based VGG19 compared with VGG16 using CT-scan images for accuracy improvement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lung%20cancer%20prediction%20using%20convolutional%20neural%20network%20based%20VGG19%20compared%20with%20VGG16%20using%20CT-scan%20images%20for%20accuracy%20improvement&rft.btitle=AIP%20conference%20proceedings&rft.au=Nali,%20Mohana%20Krishna&rft.date=2023-05-04&rft.volume=2655&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0119177&rft_dat=%3Cproquest_scita%3E2809259577%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p168t-c411579da455028809337ebbf132d545df038d725a3016797e2c16c23dbbdb123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2809259577&rft_id=info:pmid/&rfr_iscdi=true