Loading…

Spatial evolution of multi-scale droplet clusters in an evaporating spray

Evaporative sprays are encountered in a wide range of engineering applications. Since clustering of droplets in sprays leads to strong inhomogeneity in the spatial distribution of droplet concentration that impacts mass, momentum, and energy exchange between the spray and the surrounding flow, a det...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2022-11, Vol.34 (11)
Main Authors: Pandurangan, Nandhakumar, Sahu, Srikrishna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evaporative sprays are encountered in a wide range of engineering applications. Since clustering of droplets in sprays leads to strong inhomogeneity in the spatial distribution of droplet concentration that impacts mass, momentum, and energy exchange between the spray and the surrounding flow, a detailed investigation of droplet clustering in evaporating sprays is important. In the current research work, we experimentally investigate the spatial evolution of droplet cluster characteristics in an evaporating acetone spray injected from an air-assist atomizer. The droplet size and velocity are measured using Interferometric Laser Imaging for Droplet Sizing technique. In detail, characterization of the droplet clusters is achieved by the application of Voronoi analysis to particle image velocimetry images of the spray droplets. This approach not only identifies the droplet clusters but also provides area, length scale, and local droplet number density within the clusters. The identified droplet clusters are multi-scale and could be classified into either large- or small-scale clusters, which scale with spray half-width and Kolmogorov length scale, respectively. Experiments are also conducted in water spray under the same operating conditions. Despite the similarity in the droplet clustering process between the two sprays at small scales of air turbulence, some distinct trends are observed for the large-scale clusters in the acetone spray. This is attributed to the higher evaporation rate of acetone droplets, which promotes preferential accumulation of droplets.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0120790