Loading…

Anisotropic electron heating in an electron cyclotron resonance thruster with magnetic nozzle

In a grid-less electron cyclotron resonance plasma thruster with a diverging magnetic nozzle, the magnitude of the ambipolar field accelerating the positive ions depends on the perpendicular energy gained by the electrons. This work investigates the heating of the electrons by electromagnetic waves,...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2023-02, Vol.30 (2)
Main Authors: Porto, J., Elias, P. Q., Ciardi, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a grid-less electron cyclotron resonance plasma thruster with a diverging magnetic nozzle, the magnitude of the ambipolar field accelerating the positive ions depends on the perpendicular energy gained by the electrons. This work investigates the heating of the electrons by electromagnetic waves, taking their bouncing motion into account in a confining well formed by the magnetic mirror force and the electrostatic potential of the thruster. An electromagnetic particle-in-cell code is used to simulate the plasma in a magnetic field tube. The code's Maxwell solver is based on a semi-Lagrangian scheme known as the constrained interpolation profile which enables larger time steps. The results show that anisotropic plasma heating takes place exclusively inside the coaxial chamber, along a Doppler-broadened zone. It is also shown that a trapped population of electrons with a larger perpendicular energy exists in the plume.
ISSN:1070-664X
1089-7674
DOI:10.1063/5.0124834