Loading…

Bragg scattering of flexural-gravity waves by a series of polynyas in the context of blocking dynamics

Flexural-gravity wave scattering due to an array of polynyas is investigated from the perspective of the blocking dynamics. The canonical eigenfunction expansion method is generalized to account for multiple propagating wave modes within blocking frequencies. Bragg scattering occurs due to the prese...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2023-01, Vol.35 (1)
Main Authors: Barman, S. C., Boral, S., Sahoo, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flexural-gravity wave scattering due to an array of polynyas is investigated from the perspective of the blocking dynamics. The canonical eigenfunction expansion method is generalized to account for multiple propagating wave modes within blocking frequencies. Bragg scattering occurs due to the presence of multiple gaps in the floating ice sheet, and the number of sub-harmonic peaks in wave reflection becomes one/two less than the number of gaps as the reflection coefficient varies with a change in gap/ice-sheet length. In addition, the amplitudes of harmonic peaks in wave reflection increase with an increase in the number of gaps. The variation of wave reflection with an increase in wavenumber/length of the ice sheet depicts that common zero minima occur for an even number of gaps, while common sub-harmonic maxima occur for an odd number of gaps. The scattering coefficients vary between zero and unity within the blocking frequencies, despite the individual amplitudes of the scattered waves becoming more than unity for certain frequencies. Noticeably, higher amplitudes of the scattered waves are associated with lower energy transfer rates and vice versa. Extrema in wave reflection occur for higher values of frequency within the primary and secondary blocking points. In addition, removable discontinuities are found in the scattering coefficient at the blocking frequencies, whereas a jump discontinuity is observed for certain frequencies within the blocking limits due to the incident wave mode conversion. Moreover, irregularities in the ice sheet's deflection are observed for any frequency within the blocking limit due to the superposition of three propagating wave modes.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0131244