Loading…
Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width
The shallow water equations (SWE) model a variety of geophysical flows. Flows in channels with rectangular cross sections may be modeled with a simplified one-dimensional SWE with varying width. Among other model parameters, information about the bathymetry and friction coefficient is needed for the...
Saved in:
Published in: | Physics of fluids (1994) 2023-02, Vol.35 (2) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 35 |
creator | Hernández-Dueñas, Gerardo Moreles, Miguel Angel González-Casanova, Pedro |
description | The shallow water equations (SWE) model a variety of geophysical flows. Flows in channels with rectangular cross sections may be modeled with a simplified one-dimensional SWE with varying width. Among other model parameters, information about the bathymetry and friction coefficient is needed for the correct and precise prediction of the flow. Although synthetic values of the model parameters may suffice for testing numerical schemes, approximations of the bathymetry and other parameters may be required for specific applications. Estimations may be obtained by experimental methods, but some of those techniques may be expensive, time consuming, and not always available. In this work, we propose to solve the inverse problem to estimate the bathymetry and the Manning's friction coefficient from transient velocity data. This is done with the aid of a cost functional, which includes the SWE through Lagrange multipliers. We prove that the velocity data determine uniquely the derivative of the bathymetry in a linearized shallow water system. That is, the inverse problem is identifiable. The solution is obtained by solving the constrained optimization problem by a continuous descent method. The direct and the adjoint problems are both solved numerically using a second-order accurate Roe-type upwind scheme. Numerical tests are included to show the merits of the algorithm. |
doi_str_mv | 10.1063/5.0136017 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0136017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773981705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhhdRsFYP_oOAJ4Wt2U2TzR61-AUFL3peZvPhpmyTmqQt-xv806Yf4N3TvDM8DDNPll0XeFJgRu7pBBeE4aI6yUYF5nVeMcZOd7nCOWOkOM8uQlhgjEldslH28wixG5Yq-gGBlUh7I6JxFqkQzRL2UXu3RNGDDUbZiDaqd8LEAUmIgLTzyFmVS7NUCXAWehQ66Hu3RVuIyiOdYkDGIrdSFokOrFV9QFsTO7QBPxj7lRoZu8vsTEMf1NWxjrPP56eP2Ws-f395mz3Mc1HSKuZqimXLpiUoyYUmNQehSEk5JaTlVDKodMmhpZLXMK01E2kuOBeUymnbCkHG2c1h78q773V6tFm4tU-Hh6asqrSwqDBN1O2BEt6F4JVuVj4Z8UNT4GbnuqHN0XVi7w5sSGL20v4Hb5z_A5uV1OQXg_yRLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773981705</pqid></control><display><type>article</type><title>Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Hernández-Dueñas, Gerardo ; Moreles, Miguel Angel ; González-Casanova, Pedro</creator><creatorcontrib>Hernández-Dueñas, Gerardo ; Moreles, Miguel Angel ; González-Casanova, Pedro</creatorcontrib><description>The shallow water equations (SWE) model a variety of geophysical flows. Flows in channels with rectangular cross sections may be modeled with a simplified one-dimensional SWE with varying width. Among other model parameters, information about the bathymetry and friction coefficient is needed for the correct and precise prediction of the flow. Although synthetic values of the model parameters may suffice for testing numerical schemes, approximations of the bathymetry and other parameters may be required for specific applications. Estimations may be obtained by experimental methods, but some of those techniques may be expensive, time consuming, and not always available. In this work, we propose to solve the inverse problem to estimate the bathymetry and the Manning's friction coefficient from transient velocity data. This is done with the aid of a cost functional, which includes the SWE through Lagrange multipliers. We prove that the velocity data determine uniquely the derivative of the bathymetry in a linearized shallow water system. That is, the inverse problem is identifiable. The solution is obtained by solving the constrained optimization problem by a continuous descent method. The direct and the adjoint problems are both solved numerically using a second-order accurate Roe-type upwind scheme. Numerical tests are included to show the merits of the algorithm.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0136017</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Bathymeters ; Bathymetry ; Coefficient of friction ; Fluid dynamics ; Friction ; Inverse problems ; Lagrange multiplier ; Mathematical models ; Open channels ; Optimization ; Parameters ; Physics ; Shallow water equations</subject><ispartof>Physics of fluids (1994), 2023-02, Vol.35 (2)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3</citedby><cites>FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3</cites><orcidid>0000-0002-4845-6723 ; 0000-0003-1643-1844 ; 0000-0003-2185-5385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Hernández-Dueñas, Gerardo</creatorcontrib><creatorcontrib>Moreles, Miguel Angel</creatorcontrib><creatorcontrib>González-Casanova, Pedro</creatorcontrib><title>Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width</title><title>Physics of fluids (1994)</title><description>The shallow water equations (SWE) model a variety of geophysical flows. Flows in channels with rectangular cross sections may be modeled with a simplified one-dimensional SWE with varying width. Among other model parameters, information about the bathymetry and friction coefficient is needed for the correct and precise prediction of the flow. Although synthetic values of the model parameters may suffice for testing numerical schemes, approximations of the bathymetry and other parameters may be required for specific applications. Estimations may be obtained by experimental methods, but some of those techniques may be expensive, time consuming, and not always available. In this work, we propose to solve the inverse problem to estimate the bathymetry and the Manning's friction coefficient from transient velocity data. This is done with the aid of a cost functional, which includes the SWE through Lagrange multipliers. We prove that the velocity data determine uniquely the derivative of the bathymetry in a linearized shallow water system. That is, the inverse problem is identifiable. The solution is obtained by solving the constrained optimization problem by a continuous descent method. The direct and the adjoint problems are both solved numerically using a second-order accurate Roe-type upwind scheme. Numerical tests are included to show the merits of the algorithm.</description><subject>Algorithms</subject><subject>Bathymeters</subject><subject>Bathymetry</subject><subject>Coefficient of friction</subject><subject>Fluid dynamics</subject><subject>Friction</subject><subject>Inverse problems</subject><subject>Lagrange multiplier</subject><subject>Mathematical models</subject><subject>Open channels</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physics</subject><subject>Shallow water equations</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhhdRsFYP_oOAJ4Wt2U2TzR61-AUFL3peZvPhpmyTmqQt-xv806Yf4N3TvDM8DDNPll0XeFJgRu7pBBeE4aI6yUYF5nVeMcZOd7nCOWOkOM8uQlhgjEldslH28wixG5Yq-gGBlUh7I6JxFqkQzRL2UXu3RNGDDUbZiDaqd8LEAUmIgLTzyFmVS7NUCXAWehQ66Hu3RVuIyiOdYkDGIrdSFokOrFV9QFsTO7QBPxj7lRoZu8vsTEMf1NWxjrPP56eP2Ws-f395mz3Mc1HSKuZqimXLpiUoyYUmNQehSEk5JaTlVDKodMmhpZLXMK01E2kuOBeUymnbCkHG2c1h78q773V6tFm4tU-Hh6asqrSwqDBN1O2BEt6F4JVuVj4Z8UNT4GbnuqHN0XVi7w5sSGL20v4Hb5z_A5uV1OQXg_yRLg</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Hernández-Dueñas, Gerardo</creator><creator>Moreles, Miguel Angel</creator><creator>González-Casanova, Pedro</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4845-6723</orcidid><orcidid>https://orcid.org/0000-0003-1643-1844</orcidid><orcidid>https://orcid.org/0000-0003-2185-5385</orcidid></search><sort><creationdate>202302</creationdate><title>Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width</title><author>Hernández-Dueñas, Gerardo ; Moreles, Miguel Angel ; González-Casanova, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bathymeters</topic><topic>Bathymetry</topic><topic>Coefficient of friction</topic><topic>Fluid dynamics</topic><topic>Friction</topic><topic>Inverse problems</topic><topic>Lagrange multiplier</topic><topic>Mathematical models</topic><topic>Open channels</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physics</topic><topic>Shallow water equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Dueñas, Gerardo</creatorcontrib><creatorcontrib>Moreles, Miguel Angel</creatorcontrib><creatorcontrib>González-Casanova, Pedro</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Dueñas, Gerardo</au><au>Moreles, Miguel Angel</au><au>González-Casanova, Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-02</date><risdate>2023</risdate><volume>35</volume><issue>2</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The shallow water equations (SWE) model a variety of geophysical flows. Flows in channels with rectangular cross sections may be modeled with a simplified one-dimensional SWE with varying width. Among other model parameters, information about the bathymetry and friction coefficient is needed for the correct and precise prediction of the flow. Although synthetic values of the model parameters may suffice for testing numerical schemes, approximations of the bathymetry and other parameters may be required for specific applications. Estimations may be obtained by experimental methods, but some of those techniques may be expensive, time consuming, and not always available. In this work, we propose to solve the inverse problem to estimate the bathymetry and the Manning's friction coefficient from transient velocity data. This is done with the aid of a cost functional, which includes the SWE through Lagrange multipliers. We prove that the velocity data determine uniquely the derivative of the bathymetry in a linearized shallow water system. That is, the inverse problem is identifiable. The solution is obtained by solving the constrained optimization problem by a continuous descent method. The direct and the adjoint problems are both solved numerically using a second-order accurate Roe-type upwind scheme. Numerical tests are included to show the merits of the algorithm.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0136017</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4845-6723</orcidid><orcidid>https://orcid.org/0000-0003-1643-1844</orcidid><orcidid>https://orcid.org/0000-0003-2185-5385</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2023-02, Vol.35 (2) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0136017 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Algorithms Bathymeters Bathymetry Coefficient of friction Fluid dynamics Friction Inverse problems Lagrange multiplier Mathematical models Open channels Optimization Parameters Physics Shallow water equations |
title | Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bathymetry%20and%20friction%20estimation%20from%20transient%20velocity%20data%20for%20one-dimensional%20shallow%20water%20flows%20in%20open%20channels%20with%20varying%20width&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Hern%C3%A1ndez-Due%C3%B1as,%20Gerardo&rft.date=2023-02&rft.volume=35&rft.issue=2&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0136017&rft_dat=%3Cproquest_scita%3E2773981705%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773981705&rft_id=info:pmid/&rfr_iscdi=true |