Loading…

Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width

The shallow water equations (SWE) model a variety of geophysical flows. Flows in channels with rectangular cross sections may be modeled with a simplified one-dimensional SWE with varying width. Among other model parameters, information about the bathymetry and friction coefficient is needed for the...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2023-02, Vol.35 (2)
Main Authors: Hernández-Dueñas, Gerardo, Moreles, Miguel Angel, González-Casanova, Pedro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3
cites cdi_FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3
container_end_page
container_issue 2
container_start_page
container_title Physics of fluids (1994)
container_volume 35
creator Hernández-Dueñas, Gerardo
Moreles, Miguel Angel
González-Casanova, Pedro
description The shallow water equations (SWE) model a variety of geophysical flows. Flows in channels with rectangular cross sections may be modeled with a simplified one-dimensional SWE with varying width. Among other model parameters, information about the bathymetry and friction coefficient is needed for the correct and precise prediction of the flow. Although synthetic values of the model parameters may suffice for testing numerical schemes, approximations of the bathymetry and other parameters may be required for specific applications. Estimations may be obtained by experimental methods, but some of those techniques may be expensive, time consuming, and not always available. In this work, we propose to solve the inverse problem to estimate the bathymetry and the Manning's friction coefficient from transient velocity data. This is done with the aid of a cost functional, which includes the SWE through Lagrange multipliers. We prove that the velocity data determine uniquely the derivative of the bathymetry in a linearized shallow water system. That is, the inverse problem is identifiable. The solution is obtained by solving the constrained optimization problem by a continuous descent method. The direct and the adjoint problems are both solved numerically using a second-order accurate Roe-type upwind scheme. Numerical tests are included to show the merits of the algorithm.
doi_str_mv 10.1063/5.0136017
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0136017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773981705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhhdRsFYP_oOAJ4Wt2U2TzR61-AUFL3peZvPhpmyTmqQt-xv806Yf4N3TvDM8DDNPll0XeFJgRu7pBBeE4aI6yUYF5nVeMcZOd7nCOWOkOM8uQlhgjEldslH28wixG5Yq-gGBlUh7I6JxFqkQzRL2UXu3RNGDDUbZiDaqd8LEAUmIgLTzyFmVS7NUCXAWehQ66Hu3RVuIyiOdYkDGIrdSFokOrFV9QFsTO7QBPxj7lRoZu8vsTEMf1NWxjrPP56eP2Ws-f395mz3Mc1HSKuZqimXLpiUoyYUmNQehSEk5JaTlVDKodMmhpZLXMK01E2kuOBeUymnbCkHG2c1h78q773V6tFm4tU-Hh6asqrSwqDBN1O2BEt6F4JVuVj4Z8UNT4GbnuqHN0XVi7w5sSGL20v4Hb5z_A5uV1OQXg_yRLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773981705</pqid></control><display><type>article</type><title>Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Hernández-Dueñas, Gerardo ; Moreles, Miguel Angel ; González-Casanova, Pedro</creator><creatorcontrib>Hernández-Dueñas, Gerardo ; Moreles, Miguel Angel ; González-Casanova, Pedro</creatorcontrib><description>The shallow water equations (SWE) model a variety of geophysical flows. Flows in channels with rectangular cross sections may be modeled with a simplified one-dimensional SWE with varying width. Among other model parameters, information about the bathymetry and friction coefficient is needed for the correct and precise prediction of the flow. Although synthetic values of the model parameters may suffice for testing numerical schemes, approximations of the bathymetry and other parameters may be required for specific applications. Estimations may be obtained by experimental methods, but some of those techniques may be expensive, time consuming, and not always available. In this work, we propose to solve the inverse problem to estimate the bathymetry and the Manning's friction coefficient from transient velocity data. This is done with the aid of a cost functional, which includes the SWE through Lagrange multipliers. We prove that the velocity data determine uniquely the derivative of the bathymetry in a linearized shallow water system. That is, the inverse problem is identifiable. The solution is obtained by solving the constrained optimization problem by a continuous descent method. The direct and the adjoint problems are both solved numerically using a second-order accurate Roe-type upwind scheme. Numerical tests are included to show the merits of the algorithm.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0136017</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Bathymeters ; Bathymetry ; Coefficient of friction ; Fluid dynamics ; Friction ; Inverse problems ; Lagrange multiplier ; Mathematical models ; Open channels ; Optimization ; Parameters ; Physics ; Shallow water equations</subject><ispartof>Physics of fluids (1994), 2023-02, Vol.35 (2)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3</citedby><cites>FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3</cites><orcidid>0000-0002-4845-6723 ; 0000-0003-1643-1844 ; 0000-0003-2185-5385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Hernández-Dueñas, Gerardo</creatorcontrib><creatorcontrib>Moreles, Miguel Angel</creatorcontrib><creatorcontrib>González-Casanova, Pedro</creatorcontrib><title>Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width</title><title>Physics of fluids (1994)</title><description>The shallow water equations (SWE) model a variety of geophysical flows. Flows in channels with rectangular cross sections may be modeled with a simplified one-dimensional SWE with varying width. Among other model parameters, information about the bathymetry and friction coefficient is needed for the correct and precise prediction of the flow. Although synthetic values of the model parameters may suffice for testing numerical schemes, approximations of the bathymetry and other parameters may be required for specific applications. Estimations may be obtained by experimental methods, but some of those techniques may be expensive, time consuming, and not always available. In this work, we propose to solve the inverse problem to estimate the bathymetry and the Manning's friction coefficient from transient velocity data. This is done with the aid of a cost functional, which includes the SWE through Lagrange multipliers. We prove that the velocity data determine uniquely the derivative of the bathymetry in a linearized shallow water system. That is, the inverse problem is identifiable. The solution is obtained by solving the constrained optimization problem by a continuous descent method. The direct and the adjoint problems are both solved numerically using a second-order accurate Roe-type upwind scheme. Numerical tests are included to show the merits of the algorithm.</description><subject>Algorithms</subject><subject>Bathymeters</subject><subject>Bathymetry</subject><subject>Coefficient of friction</subject><subject>Fluid dynamics</subject><subject>Friction</subject><subject>Inverse problems</subject><subject>Lagrange multiplier</subject><subject>Mathematical models</subject><subject>Open channels</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physics</subject><subject>Shallow water equations</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhhdRsFYP_oOAJ4Wt2U2TzR61-AUFL3peZvPhpmyTmqQt-xv806Yf4N3TvDM8DDNPll0XeFJgRu7pBBeE4aI6yUYF5nVeMcZOd7nCOWOkOM8uQlhgjEldslH28wixG5Yq-gGBlUh7I6JxFqkQzRL2UXu3RNGDDUbZiDaqd8LEAUmIgLTzyFmVS7NUCXAWehQ66Hu3RVuIyiOdYkDGIrdSFokOrFV9QFsTO7QBPxj7lRoZu8vsTEMf1NWxjrPP56eP2Ws-f395mz3Mc1HSKuZqimXLpiUoyYUmNQehSEk5JaTlVDKodMmhpZLXMK01E2kuOBeUymnbCkHG2c1h78q773V6tFm4tU-Hh6asqrSwqDBN1O2BEt6F4JVuVj4Z8UNT4GbnuqHN0XVi7w5sSGL20v4Hb5z_A5uV1OQXg_yRLg</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Hernández-Dueñas, Gerardo</creator><creator>Moreles, Miguel Angel</creator><creator>González-Casanova, Pedro</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4845-6723</orcidid><orcidid>https://orcid.org/0000-0003-1643-1844</orcidid><orcidid>https://orcid.org/0000-0003-2185-5385</orcidid></search><sort><creationdate>202302</creationdate><title>Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width</title><author>Hernández-Dueñas, Gerardo ; Moreles, Miguel Angel ; González-Casanova, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bathymeters</topic><topic>Bathymetry</topic><topic>Coefficient of friction</topic><topic>Fluid dynamics</topic><topic>Friction</topic><topic>Inverse problems</topic><topic>Lagrange multiplier</topic><topic>Mathematical models</topic><topic>Open channels</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physics</topic><topic>Shallow water equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Dueñas, Gerardo</creatorcontrib><creatorcontrib>Moreles, Miguel Angel</creatorcontrib><creatorcontrib>González-Casanova, Pedro</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Dueñas, Gerardo</au><au>Moreles, Miguel Angel</au><au>González-Casanova, Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-02</date><risdate>2023</risdate><volume>35</volume><issue>2</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The shallow water equations (SWE) model a variety of geophysical flows. Flows in channels with rectangular cross sections may be modeled with a simplified one-dimensional SWE with varying width. Among other model parameters, information about the bathymetry and friction coefficient is needed for the correct and precise prediction of the flow. Although synthetic values of the model parameters may suffice for testing numerical schemes, approximations of the bathymetry and other parameters may be required for specific applications. Estimations may be obtained by experimental methods, but some of those techniques may be expensive, time consuming, and not always available. In this work, we propose to solve the inverse problem to estimate the bathymetry and the Manning's friction coefficient from transient velocity data. This is done with the aid of a cost functional, which includes the SWE through Lagrange multipliers. We prove that the velocity data determine uniquely the derivative of the bathymetry in a linearized shallow water system. That is, the inverse problem is identifiable. The solution is obtained by solving the constrained optimization problem by a continuous descent method. The direct and the adjoint problems are both solved numerically using a second-order accurate Roe-type upwind scheme. Numerical tests are included to show the merits of the algorithm.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0136017</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4845-6723</orcidid><orcidid>https://orcid.org/0000-0003-1643-1844</orcidid><orcidid>https://orcid.org/0000-0003-2185-5385</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-02, Vol.35 (2)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0136017
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Algorithms
Bathymeters
Bathymetry
Coefficient of friction
Fluid dynamics
Friction
Inverse problems
Lagrange multiplier
Mathematical models
Open channels
Optimization
Parameters
Physics
Shallow water equations
title Bathymetry and friction estimation from transient velocity data for one-dimensional shallow water flows in open channels with varying width
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bathymetry%20and%20friction%20estimation%20from%20transient%20velocity%20data%20for%20one-dimensional%20shallow%20water%20flows%20in%20open%20channels%20with%20varying%20width&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Hern%C3%A1ndez-Due%C3%B1as,%20Gerardo&rft.date=2023-02&rft.volume=35&rft.issue=2&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0136017&rft_dat=%3Cproquest_scita%3E2773981705%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-e40db642aed8cf398ace3258533b85d6a7f28ab5d89a49f6c33bc88c55d4bbcc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773981705&rft_id=info:pmid/&rfr_iscdi=true