Loading…

On the analyticity of the pressure for a non-ideal gas with high density boundary conditions

We consider a continuous system of classical particles confined in a cubic box Λ interacting through a stable and finite range pair potential with an attractive tail. We study the Mayer series of the grand canonical pressure of the system pΛω(β,λ) at inverse temperature β and fugacity λ in the prese...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2023-05, Vol.64 (5)
Main Authors: Fialho, Paula M. S., de Lima, Bernardo N. B., Procacci, Aldo, Scoppola, Benedetto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c322t-a5f3ee384b853f157fa2c7f1ceb099e207bcca0d922e4018d506121300ec208d3
container_end_page
container_issue 5
container_start_page
container_title Journal of mathematical physics
container_volume 64
creator Fialho, Paula M. S.
de Lima, Bernardo N. B.
Procacci, Aldo
Scoppola, Benedetto
description We consider a continuous system of classical particles confined in a cubic box Λ interacting through a stable and finite range pair potential with an attractive tail. We study the Mayer series of the grand canonical pressure of the system pΛω(β,λ) at inverse temperature β and fugacity λ in the presence of boundary conditions ω belonging to a very large class of locally finite particle configurations. This class of allowed boundary conditions is the basis for any probability measure on the space of locally finite particle configurations satisfying the Ruelle estimates. We show that the pΛω(β,λ) can be written as the sum of two terms. The first term, which is analytic and bounded as the fugacity λ varies in a Λ-independent and ω-independent disk, coincides with the free-boundary-condition pressure in the thermodynamic limit. The second term, analytic in a ω-dependent convergence radius, goes to zero in the thermodynamic limit. As far as we know, this is the first rigorous analysis of the behavior of the Mayer series of a non-ideal gas subjected to non-free and non-periodic boundary conditions in the low-density/high-temperature regime when particles interact through a non-purely repulsive pair potential.
doi_str_mv 10.1063/5.0136724
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0136724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812850580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a5f3ee384b853f157fa2c7f1ceb099e207bcca0d922e4018d506121300ec208d3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LqJNnspkcpfkGhF70JIZuPbkpN1mRX6b93awvePQ0MzzvM-yB0SeCWQMXu-C0QVtW0PEITAmJW1BUXx2gCQGlBSyFO0VnOawBCRFlO0Psy4L61WAW12fZe-36Lo_tddcnmPCSLXUxY4RBD4Y1VG7xSGX_7vsWtX7XY2JB3qSYOwai0xToG43sfQz5HJ05tsr04zCl6e3x4nT8Xi-XTy_x-UWhGaV8o7pi1TJSN4MwRXjtFde2Itg3MZpZC3WitwMwotSUQYThUhBIGYDUFYdgUXe3vdil-Djb3ch2HNDbKkgpCBQcuYKSu95ROMedkneyS_xg_lgTkTp7k8iBvZG_2bB6NqF2Z_8FfMf2BsjOO_QDiVX0l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812850580</pqid></control><display><type>article</type><title>On the analyticity of the pressure for a non-ideal gas with high density boundary conditions</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics(アメリカ物理学協会)</source><creator>Fialho, Paula M. S. ; de Lima, Bernardo N. B. ; Procacci, Aldo ; Scoppola, Benedetto</creator><creatorcontrib>Fialho, Paula M. S. ; de Lima, Bernardo N. B. ; Procacci, Aldo ; Scoppola, Benedetto</creatorcontrib><description>We consider a continuous system of classical particles confined in a cubic box Λ interacting through a stable and finite range pair potential with an attractive tail. We study the Mayer series of the grand canonical pressure of the system pΛω(β,λ) at inverse temperature β and fugacity λ in the presence of boundary conditions ω belonging to a very large class of locally finite particle configurations. This class of allowed boundary conditions is the basis for any probability measure on the space of locally finite particle configurations satisfying the Ruelle estimates. We show that the pΛω(β,λ) can be written as the sum of two terms. The first term, which is analytic and bounded as the fugacity λ varies in a Λ-independent and ω-independent disk, coincides with the free-boundary-condition pressure in the thermodynamic limit. The second term, analytic in a ω-dependent convergence radius, goes to zero in the thermodynamic limit. As far as we know, this is the first rigorous analysis of the behavior of the Mayer series of a non-ideal gas subjected to non-free and non-periodic boundary conditions in the low-density/high-temperature regime when particles interact through a non-purely repulsive pair potential.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0136724</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Boundary conditions ; Configurations ; Density ; Fugacity ; High temperature ; Ideal gas ; Mathematical analysis ; Physics ; Thermodynamics</subject><ispartof>Journal of mathematical physics, 2023-05, Vol.64 (5)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-a5f3ee384b853f157fa2c7f1ceb099e207bcca0d922e4018d506121300ec208d3</cites><orcidid>0000-0002-5318-0389 ; 0000-0001-6906-3745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0136724$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Fialho, Paula M. S.</creatorcontrib><creatorcontrib>de Lima, Bernardo N. B.</creatorcontrib><creatorcontrib>Procacci, Aldo</creatorcontrib><creatorcontrib>Scoppola, Benedetto</creatorcontrib><title>On the analyticity of the pressure for a non-ideal gas with high density boundary conditions</title><title>Journal of mathematical physics</title><description>We consider a continuous system of classical particles confined in a cubic box Λ interacting through a stable and finite range pair potential with an attractive tail. We study the Mayer series of the grand canonical pressure of the system pΛω(β,λ) at inverse temperature β and fugacity λ in the presence of boundary conditions ω belonging to a very large class of locally finite particle configurations. This class of allowed boundary conditions is the basis for any probability measure on the space of locally finite particle configurations satisfying the Ruelle estimates. We show that the pΛω(β,λ) can be written as the sum of two terms. The first term, which is analytic and bounded as the fugacity λ varies in a Λ-independent and ω-independent disk, coincides with the free-boundary-condition pressure in the thermodynamic limit. The second term, analytic in a ω-dependent convergence radius, goes to zero in the thermodynamic limit. As far as we know, this is the first rigorous analysis of the behavior of the Mayer series of a non-ideal gas subjected to non-free and non-periodic boundary conditions in the low-density/high-temperature regime when particles interact through a non-purely repulsive pair potential.</description><subject>Boundary conditions</subject><subject>Configurations</subject><subject>Density</subject><subject>Fugacity</subject><subject>High temperature</subject><subject>Ideal gas</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Thermodynamics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LqJNnspkcpfkGhF70JIZuPbkpN1mRX6b93awvePQ0MzzvM-yB0SeCWQMXu-C0QVtW0PEITAmJW1BUXx2gCQGlBSyFO0VnOawBCRFlO0Psy4L61WAW12fZe-36Lo_tddcnmPCSLXUxY4RBD4Y1VG7xSGX_7vsWtX7XY2JB3qSYOwai0xToG43sfQz5HJ05tsr04zCl6e3x4nT8Xi-XTy_x-UWhGaV8o7pi1TJSN4MwRXjtFde2Itg3MZpZC3WitwMwotSUQYThUhBIGYDUFYdgUXe3vdil-Djb3ch2HNDbKkgpCBQcuYKSu95ROMedkneyS_xg_lgTkTp7k8iBvZG_2bB6NqF2Z_8FfMf2BsjOO_QDiVX0l</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Fialho, Paula M. S.</creator><creator>de Lima, Bernardo N. B.</creator><creator>Procacci, Aldo</creator><creator>Scoppola, Benedetto</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5318-0389</orcidid><orcidid>https://orcid.org/0000-0001-6906-3745</orcidid></search><sort><creationdate>20230501</creationdate><title>On the analyticity of the pressure for a non-ideal gas with high density boundary conditions</title><author>Fialho, Paula M. S. ; de Lima, Bernardo N. B. ; Procacci, Aldo ; Scoppola, Benedetto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a5f3ee384b853f157fa2c7f1ceb099e207bcca0d922e4018d506121300ec208d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Configurations</topic><topic>Density</topic><topic>Fugacity</topic><topic>High temperature</topic><topic>Ideal gas</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fialho, Paula M. S.</creatorcontrib><creatorcontrib>de Lima, Bernardo N. B.</creatorcontrib><creatorcontrib>Procacci, Aldo</creatorcontrib><creatorcontrib>Scoppola, Benedetto</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fialho, Paula M. S.</au><au>de Lima, Bernardo N. B.</au><au>Procacci, Aldo</au><au>Scoppola, Benedetto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the analyticity of the pressure for a non-ideal gas with high density boundary conditions</atitle><jtitle>Journal of mathematical physics</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>64</volume><issue>5</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider a continuous system of classical particles confined in a cubic box Λ interacting through a stable and finite range pair potential with an attractive tail. We study the Mayer series of the grand canonical pressure of the system pΛω(β,λ) at inverse temperature β and fugacity λ in the presence of boundary conditions ω belonging to a very large class of locally finite particle configurations. This class of allowed boundary conditions is the basis for any probability measure on the space of locally finite particle configurations satisfying the Ruelle estimates. We show that the pΛω(β,λ) can be written as the sum of two terms. The first term, which is analytic and bounded as the fugacity λ varies in a Λ-independent and ω-independent disk, coincides with the free-boundary-condition pressure in the thermodynamic limit. The second term, analytic in a ω-dependent convergence radius, goes to zero in the thermodynamic limit. As far as we know, this is the first rigorous analysis of the behavior of the Mayer series of a non-ideal gas subjected to non-free and non-periodic boundary conditions in the low-density/high-temperature regime when particles interact through a non-purely repulsive pair potential.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0136724</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5318-0389</orcidid><orcidid>https://orcid.org/0000-0001-6906-3745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2023-05, Vol.64 (5)
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_5_0136724
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics(アメリカ物理学協会)
subjects Boundary conditions
Configurations
Density
Fugacity
High temperature
Ideal gas
Mathematical analysis
Physics
Thermodynamics
title On the analyticity of the pressure for a non-ideal gas with high density boundary conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20analyticity%20of%20the%20pressure%20for%20a%20non-ideal%20gas%20with%20high%20density%20boundary%20conditions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Fialho,%20Paula%20M.%20S.&rft.date=2023-05-01&rft.volume=64&rft.issue=5&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0136724&rft_dat=%3Cproquest_scita%3E2812850580%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-a5f3ee384b853f157fa2c7f1ceb099e207bcca0d922e4018d506121300ec208d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812850580&rft_id=info:pmid/&rfr_iscdi=true