Loading…

Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials

Semi-empirical quantum models such as Density Functional Tight Binding (DFTB) are attractive methods for obtaining quantum simulation data at longer time and length scales than possible with standard approaches. However, application of these models can require lengthy effort due to the lack of a sys...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2023-04, Vol.158 (14), p.144112-144112
Main Authors: Goldman, Nir, Fried, Laurence E., Lindsey, Rebecca K., Pham, C. Huy, Dettori, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-c0de1d208f8b60f22b17d3e86af4f44d6e027d218e8f0ba9e4a94e4f1ac402d53
cites cdi_FETCH-LOGICAL-c410t-c0de1d208f8b60f22b17d3e86af4f44d6e027d218e8f0ba9e4a94e4f1ac402d53
container_end_page 144112
container_issue 14
container_start_page 144112
container_title The Journal of chemical physics
container_volume 158
creator Goldman, Nir
Fried, Laurence E.
Lindsey, Rebecca K.
Pham, C. Huy
Dettori, R.
description Semi-empirical quantum models such as Density Functional Tight Binding (DFTB) are attractive methods for obtaining quantum simulation data at longer time and length scales than possible with standard approaches. However, application of these models can require lengthy effort due to the lack of a systematic approach for their development. In this work, we discuss the use of the Chebyshev Interaction Model for Efficient Simulation (ChIMES) to create rapidly parameterized DFTB models, which exhibit strong transferability due to the inclusion of many-body interactions that might otherwise be inaccurate. We apply our modeling approach to silicon polymorphs and review previous work on titanium hydride. We also review the creation of a general purpose DFTB/ChIMES model for organic molecules and compounds that approaches hybrid functional and coupled cluster accuracy with two orders of magnitude fewer parameters than similar neural network approaches. In all cases, DFTB/ChIMES yields similar accuracy to the underlying quantum method with orders of magnitude improvement in computational cost. Our developments provide a way to create computationally efficient and highly accurate simulations over varying extreme thermodynamic conditions, where physical and chemical properties can be difficult to interrogate directly, and there is historically a significant reliance on theoretical approaches for interpretation and validation of experimental results.
doi_str_mv 10.1063/5.0141616
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0141616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801976035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-c0de1d208f8b60f22b17d3e86af4f44d6e027d218e8f0ba9e4a94e4f1ac402d53</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS0EokNhwQ8gCzZQKeXZ8TjxshoNtFJRF4V15NjPE1eJPY2dRf6eRDOwYMHqbs49enqXkPcMrhnI8uv2GphgkskXZMOgVkUlFbwkGwDOCiVBXpA3KT0BAKu4eE0uygokE5XakOd96HQwPhxo7pBqY6ZRm5lGRy2G5PNM3RRM9jHonmZ_6DJtfbBrYYgW-7T0xjgdOrrr7n7sH-mgw1y00c7Uh4yLbO3SY8wYstd9ekteuSXw3Tkvya9v-5-72-L-4fvd7ua-MIJBLgxYZJZD7epWguO8ZZUtsZbaCSeElQi8spzVWDtotUKhlUDhmDYCuN2Wl-TjyRtT9k0yPqPpTAwBTW44B644W6DPJ-g4xucJU24Gnwz2vQ4Yp9TwGpiqJJSr79M_6FOcxuUrC1UpVVeLc6W-nCgzxpRGdM1x9IMe54ZBs47VbJvzWAv74Wyc2gHtX_LPOgtwdQLW6_X6x__YfgPRXpwc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799872205</pqid></control><display><type>article</type><title>Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Goldman, Nir ; Fried, Laurence E. ; Lindsey, Rebecca K. ; Pham, C. Huy ; Dettori, R.</creator><creatorcontrib>Goldman, Nir ; Fried, Laurence E. ; Lindsey, Rebecca K. ; Pham, C. Huy ; Dettori, R. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Semi-empirical quantum models such as Density Functional Tight Binding (DFTB) are attractive methods for obtaining quantum simulation data at longer time and length scales than possible with standard approaches. However, application of these models can require lengthy effort due to the lack of a systematic approach for their development. In this work, we discuss the use of the Chebyshev Interaction Model for Efficient Simulation (ChIMES) to create rapidly parameterized DFTB models, which exhibit strong transferability due to the inclusion of many-body interactions that might otherwise be inaccurate. We apply our modeling approach to silicon polymorphs and review previous work on titanium hydride. We also review the creation of a general purpose DFTB/ChIMES model for organic molecules and compounds that approaches hybrid functional and coupled cluster accuracy with two orders of magnitude fewer parameters than similar neural network approaches. In all cases, DFTB/ChIMES yields similar accuracy to the underlying quantum method with orders of magnitude improvement in computational cost. Our developments provide a way to create computationally efficient and highly accurate simulations over varying extreme thermodynamic conditions, where physical and chemical properties can be difficult to interrogate directly, and there is historically a significant reliance on theoretical approaches for interpretation and validation of experimental results.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0141616</identifier><identifier>PMID: 37061479</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Accuracy ; Binding ; Chebyshev approximation ; Chebyshev functions ; Chemical properties ; Computational efficiency ; computer simulation ; Density ; density-functional tight-binding ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Interaction models ; machine learning ; Many body problem ; Neural networks ; Organic chemistry ; quantum mechanical calculations ; quantum mechanical systems and processes ; Simulation</subject><ispartof>The Journal of chemical physics, 2023-04, Vol.158 (14), p.144112-144112</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-c0de1d208f8b60f22b17d3e86af4f44d6e027d218e8f0ba9e4a94e4f1ac402d53</citedby><cites>FETCH-LOGICAL-c410t-c0de1d208f8b60f22b17d3e86af4f44d6e027d218e8f0ba9e4a94e4f1ac402d53</cites><orcidid>0000-0002-9437-7700 ; 0000-0002-9465-9361 ; 0000-0002-3438-9064 ; 0000-0002-4678-1098 ; 0000-0003-3052-2128 ; 0000000246781098 ; 0000000294377700 ; 0000000294659361 ; 0000000330522128 ; 0000000234389064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0141616$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,779,781,792,882,27905,27906,76132</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37061479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2202921$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldman, Nir</creatorcontrib><creatorcontrib>Fried, Laurence E.</creatorcontrib><creatorcontrib>Lindsey, Rebecca K.</creatorcontrib><creatorcontrib>Pham, C. Huy</creatorcontrib><creatorcontrib>Dettori, R.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Semi-empirical quantum models such as Density Functional Tight Binding (DFTB) are attractive methods for obtaining quantum simulation data at longer time and length scales than possible with standard approaches. However, application of these models can require lengthy effort due to the lack of a systematic approach for their development. In this work, we discuss the use of the Chebyshev Interaction Model for Efficient Simulation (ChIMES) to create rapidly parameterized DFTB models, which exhibit strong transferability due to the inclusion of many-body interactions that might otherwise be inaccurate. We apply our modeling approach to silicon polymorphs and review previous work on titanium hydride. We also review the creation of a general purpose DFTB/ChIMES model for organic molecules and compounds that approaches hybrid functional and coupled cluster accuracy with two orders of magnitude fewer parameters than similar neural network approaches. In all cases, DFTB/ChIMES yields similar accuracy to the underlying quantum method with orders of magnitude improvement in computational cost. Our developments provide a way to create computationally efficient and highly accurate simulations over varying extreme thermodynamic conditions, where physical and chemical properties can be difficult to interrogate directly, and there is historically a significant reliance on theoretical approaches for interpretation and validation of experimental results.</description><subject>Accuracy</subject><subject>Binding</subject><subject>Chebyshev approximation</subject><subject>Chebyshev functions</subject><subject>Chemical properties</subject><subject>Computational efficiency</subject><subject>computer simulation</subject><subject>Density</subject><subject>density-functional tight-binding</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Interaction models</subject><subject>machine learning</subject><subject>Many body problem</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>quantum mechanical calculations</subject><subject>quantum mechanical systems and processes</subject><subject>Simulation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAURS0EokNhwQ8gCzZQKeXZ8TjxshoNtFJRF4V15NjPE1eJPY2dRf6eRDOwYMHqbs49enqXkPcMrhnI8uv2GphgkskXZMOgVkUlFbwkGwDOCiVBXpA3KT0BAKu4eE0uygokE5XakOd96HQwPhxo7pBqY6ZRm5lGRy2G5PNM3RRM9jHonmZ_6DJtfbBrYYgW-7T0xjgdOrrr7n7sH-mgw1y00c7Uh4yLbO3SY8wYstd9ekteuSXw3Tkvya9v-5-72-L-4fvd7ua-MIJBLgxYZJZD7epWguO8ZZUtsZbaCSeElQi8spzVWDtotUKhlUDhmDYCuN2Wl-TjyRtT9k0yPqPpTAwBTW44B644W6DPJ-g4xucJU24Gnwz2vQ4Yp9TwGpiqJJSr79M_6FOcxuUrC1UpVVeLc6W-nCgzxpRGdM1x9IMe54ZBs47VbJvzWAv74Wyc2gHtX_LPOgtwdQLW6_X6x__YfgPRXpwc</recordid><startdate>20230414</startdate><enddate>20230414</enddate><creator>Goldman, Nir</creator><creator>Fried, Laurence E.</creator><creator>Lindsey, Rebecca K.</creator><creator>Pham, C. Huy</creator><creator>Dettori, R.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9437-7700</orcidid><orcidid>https://orcid.org/0000-0002-9465-9361</orcidid><orcidid>https://orcid.org/0000-0002-3438-9064</orcidid><orcidid>https://orcid.org/0000-0002-4678-1098</orcidid><orcidid>https://orcid.org/0000-0003-3052-2128</orcidid><orcidid>https://orcid.org/0000000246781098</orcidid><orcidid>https://orcid.org/0000000294377700</orcidid><orcidid>https://orcid.org/0000000294659361</orcidid><orcidid>https://orcid.org/0000000330522128</orcidid><orcidid>https://orcid.org/0000000234389064</orcidid></search><sort><creationdate>20230414</creationdate><title>Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials</title><author>Goldman, Nir ; Fried, Laurence E. ; Lindsey, Rebecca K. ; Pham, C. Huy ; Dettori, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-c0de1d208f8b60f22b17d3e86af4f44d6e027d218e8f0ba9e4a94e4f1ac402d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Binding</topic><topic>Chebyshev approximation</topic><topic>Chebyshev functions</topic><topic>Chemical properties</topic><topic>Computational efficiency</topic><topic>computer simulation</topic><topic>Density</topic><topic>density-functional tight-binding</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Interaction models</topic><topic>machine learning</topic><topic>Many body problem</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>quantum mechanical calculations</topic><topic>quantum mechanical systems and processes</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldman, Nir</creatorcontrib><creatorcontrib>Fried, Laurence E.</creatorcontrib><creatorcontrib>Lindsey, Rebecca K.</creatorcontrib><creatorcontrib>Pham, C. Huy</creatorcontrib><creatorcontrib>Dettori, R.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldman, Nir</au><au>Fried, Laurence E.</au><au>Lindsey, Rebecca K.</au><au>Pham, C. Huy</au><au>Dettori, R.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-04-14</date><risdate>2023</risdate><volume>158</volume><issue>14</issue><spage>144112</spage><epage>144112</epage><pages>144112-144112</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Semi-empirical quantum models such as Density Functional Tight Binding (DFTB) are attractive methods for obtaining quantum simulation data at longer time and length scales than possible with standard approaches. However, application of these models can require lengthy effort due to the lack of a systematic approach for their development. In this work, we discuss the use of the Chebyshev Interaction Model for Efficient Simulation (ChIMES) to create rapidly parameterized DFTB models, which exhibit strong transferability due to the inclusion of many-body interactions that might otherwise be inaccurate. We apply our modeling approach to silicon polymorphs and review previous work on titanium hydride. We also review the creation of a general purpose DFTB/ChIMES model for organic molecules and compounds that approaches hybrid functional and coupled cluster accuracy with two orders of magnitude fewer parameters than similar neural network approaches. In all cases, DFTB/ChIMES yields similar accuracy to the underlying quantum method with orders of magnitude improvement in computational cost. Our developments provide a way to create computationally efficient and highly accurate simulations over varying extreme thermodynamic conditions, where physical and chemical properties can be difficult to interrogate directly, and there is historically a significant reliance on theoretical approaches for interpretation and validation of experimental results.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37061479</pmid><doi>10.1063/5.0141616</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9437-7700</orcidid><orcidid>https://orcid.org/0000-0002-9465-9361</orcidid><orcidid>https://orcid.org/0000-0002-3438-9064</orcidid><orcidid>https://orcid.org/0000-0002-4678-1098</orcidid><orcidid>https://orcid.org/0000-0003-3052-2128</orcidid><orcidid>https://orcid.org/0000000246781098</orcidid><orcidid>https://orcid.org/0000000294377700</orcidid><orcidid>https://orcid.org/0000000294659361</orcidid><orcidid>https://orcid.org/0000000330522128</orcidid><orcidid>https://orcid.org/0000000234389064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-04, Vol.158 (14), p.144112-144112
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0141616
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Accuracy
Binding
Chebyshev approximation
Chebyshev functions
Chemical properties
Computational efficiency
computer simulation
Density
density-functional tight-binding
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Interaction models
machine learning
Many body problem
Neural networks
Organic chemistry
quantum mechanical calculations
quantum mechanical systems and processes
Simulation
title Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20accuracy%20of%20density%20functional%20tight%20binding%20models%20through%20ChIMES%20many-body%20interaction%20potentials&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Goldman,%20Nir&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2023-04-14&rft.volume=158&rft.issue=14&rft.spage=144112&rft.epage=144112&rft.pages=144112-144112&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0141616&rft_dat=%3Cproquest_scita%3E2801976035%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-c0de1d208f8b60f22b17d3e86af4f44d6e027d218e8f0ba9e4a94e4f1ac402d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2799872205&rft_id=info:pmid/37061479&rfr_iscdi=true