Loading…
Thermal dissipation induced by fast-moving edge dislocations
Microscopic mechanics of thermal dissipation induced by fast-moving edge dislocations are crucial for a deeper understanding of the nature of plastic deformation. Herein, we study the thermal dissipation induced by a fast-moving edge dislocation and discuss the effect of non-Schmid stress on the the...
Saved in:
Published in: | Journal of applied physics 2023-05, Vol.133 (18) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microscopic mechanics of thermal dissipation induced by fast-moving edge dislocations are crucial for a deeper understanding of the nature of plastic deformation. Herein, we study the thermal dissipation induced by a fast-moving edge dislocation and discuss the effect of non-Schmid stress on the thermal dissipation using molecular dynamics simulations that can quantitatively distinguish the thermal dissipation and stored energy part of the energy emitted from a moving dislocation. We show that, of the energy emitted by the fast-moving edge dislocation, no more than 5% is used to generate elastic distortion of the local atomic structure, especially at low-stress levels, and almost all the energy emitted by the moving dislocation is converted into thermal energy and dissipated. The thermal dissipation of the moving edge dislocation depends significantly on the non-Schmid stress, specifically, temperature rise decreases almost linearly as the non-Schmid stress normal to the slip plane increases, and the possible mechanism is disclosed. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0144016 |