Loading…

Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields

Computational Fluid Dynamics (CFD) generates high-dimensional spatiotemporal data. The data-driven method approach to extracting physical information from CFD has attracted widespread concern in fluid mechanics. While good results have been obtained for some benchmark problems, the performance on co...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2023-03, Vol.35 (3)
Main Authors: Wang, Zihao, Zhang, Guiyong, Sun, Tiezhi, Shi, Chongbin, Zhou, Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23
cites cdi_FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23
container_end_page
container_issue 3
container_start_page
container_title Physics of fluids (1994)
container_volume 35
creator Wang, Zihao
Zhang, Guiyong
Sun, Tiezhi
Shi, Chongbin
Zhou, Bo
description Computational Fluid Dynamics (CFD) generates high-dimensional spatiotemporal data. The data-driven method approach to extracting physical information from CFD has attracted widespread concern in fluid mechanics. While good results have been obtained for some benchmark problems, the performance on complex flow field problems has not been extensively studied. In this paper, we use a dimensionality reduction approach to preserve the main features of the flow field. Based on this, we perform unsupervised identification of flow field states using a clustering approach that applies data-driven analysis to the spatiotemporal structure of complex three-dimensional unsteady cavitation flows. The result shows that the data-driven method can effectively represent the changes in the spatial structure of the unsteady flow field over time and to visualize changes in the quasi-periodic state of the flow. Furthermore, we demonstrate that the combination of principal component analysis and Toeplitz inverse covariance-based clustering can identify different states of the cavitated flow field with high accuracy. This suggests that the method has great potential for application in complex flow phenomena.
doi_str_mv 10.1063/5.0145453
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0145453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787722312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23</originalsourceid><addsrcrecordid>eNqdkE1LxDAQhosouH4c_AcBTwpd89Gm26Osn7DgRc8hm0zYLG1Tk3TFv-CvNqUF755m5p1nZngny64IXhLM2V25xKQoi5IdZQuCV3Vecc6Px7zCOeeMnGZnIewxxqymfJH9PMgoc-3tATrUQtw5HZBxHjXuK9e2hS5Y18kGeeg9BOiijElAstMopByQ1Um0xqqpMc7GHaDQj3WEtnc-jYfoBxUHD8gZpOTBzntMuoOMhUaHi-zEyCbA5RzPs4-nx_f1S755e35d329yxTiNuS7rqiKKsUoDwYQbVnAFfEukxLhMxra4BEmMrkustkrJpCu9qmlBFZeSsvPsetrbe_c5QIhi7wafPAZBq1VVUcrISN1MlPIuBA9G9N620n8LgsX4alGK-dWJvZ3YoGZf_4MPzv-BoteG_QKwkZCN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787722312</pqid></control><display><type>article</type><title>Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Wang, Zihao ; Zhang, Guiyong ; Sun, Tiezhi ; Shi, Chongbin ; Zhou, Bo</creator><creatorcontrib>Wang, Zihao ; Zhang, Guiyong ; Sun, Tiezhi ; Shi, Chongbin ; Zhou, Bo</creatorcontrib><description>Computational Fluid Dynamics (CFD) generates high-dimensional spatiotemporal data. The data-driven method approach to extracting physical information from CFD has attracted widespread concern in fluid mechanics. While good results have been obtained for some benchmark problems, the performance on complex flow field problems has not been extensively studied. In this paper, we use a dimensionality reduction approach to preserve the main features of the flow field. Based on this, we perform unsupervised identification of flow field states using a clustering approach that applies data-driven analysis to the spatiotemporal structure of complex three-dimensional unsteady cavitation flows. The result shows that the data-driven method can effectively represent the changes in the spatial structure of the unsteady flow field over time and to visualize changes in the quasi-periodic state of the flow. Furthermore, we demonstrate that the combination of principal component analysis and Toeplitz inverse covariance-based clustering can identify different states of the cavitated flow field with high accuracy. This suggests that the method has great potential for application in complex flow phenomena.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0145453</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cavitation ; Cavitation flow ; Clustering ; Computational fluid dynamics ; Flow control ; Fluid flow ; Fluid mechanics ; Principal components analysis ; Spatiotemporal data ; Three dimensional flow ; Unsteady flow</subject><ispartof>Physics of fluids (1994), 2023-03, Vol.35 (3)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23</citedby><cites>FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23</cites><orcidid>0000-0001-5811-0403 ; 0000-0002-6994-2309 ; 0000-0003-4549-6452 ; 0000-0002-6569-6286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1554,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Zhang, Guiyong</creatorcontrib><creatorcontrib>Sun, Tiezhi</creatorcontrib><creatorcontrib>Shi, Chongbin</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><title>Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields</title><title>Physics of fluids (1994)</title><description>Computational Fluid Dynamics (CFD) generates high-dimensional spatiotemporal data. The data-driven method approach to extracting physical information from CFD has attracted widespread concern in fluid mechanics. While good results have been obtained for some benchmark problems, the performance on complex flow field problems has not been extensively studied. In this paper, we use a dimensionality reduction approach to preserve the main features of the flow field. Based on this, we perform unsupervised identification of flow field states using a clustering approach that applies data-driven analysis to the spatiotemporal structure of complex three-dimensional unsteady cavitation flows. The result shows that the data-driven method can effectively represent the changes in the spatial structure of the unsteady flow field over time and to visualize changes in the quasi-periodic state of the flow. Furthermore, we demonstrate that the combination of principal component analysis and Toeplitz inverse covariance-based clustering can identify different states of the cavitated flow field with high accuracy. This suggests that the method has great potential for application in complex flow phenomena.</description><subject>Cavitation</subject><subject>Cavitation flow</subject><subject>Clustering</subject><subject>Computational fluid dynamics</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Principal components analysis</subject><subject>Spatiotemporal data</subject><subject>Three dimensional flow</subject><subject>Unsteady flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LxDAQhosouH4c_AcBTwpd89Gm26Osn7DgRc8hm0zYLG1Tk3TFv-CvNqUF755m5p1nZngny64IXhLM2V25xKQoi5IdZQuCV3Vecc6Px7zCOeeMnGZnIewxxqymfJH9PMgoc-3tATrUQtw5HZBxHjXuK9e2hS5Y18kGeeg9BOiijElAstMopByQ1Um0xqqpMc7GHaDQj3WEtnc-jYfoBxUHD8gZpOTBzntMuoOMhUaHi-zEyCbA5RzPs4-nx_f1S755e35d329yxTiNuS7rqiKKsUoDwYQbVnAFfEukxLhMxra4BEmMrkustkrJpCu9qmlBFZeSsvPsetrbe_c5QIhi7wafPAZBq1VVUcrISN1MlPIuBA9G9N620n8LgsX4alGK-dWJvZ3YoGZf_4MPzv-BoteG_QKwkZCN</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Wang, Zihao</creator><creator>Zhang, Guiyong</creator><creator>Sun, Tiezhi</creator><creator>Shi, Chongbin</creator><creator>Zhou, Bo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5811-0403</orcidid><orcidid>https://orcid.org/0000-0002-6994-2309</orcidid><orcidid>https://orcid.org/0000-0003-4549-6452</orcidid><orcidid>https://orcid.org/0000-0002-6569-6286</orcidid></search><sort><creationdate>202303</creationdate><title>Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields</title><author>Wang, Zihao ; Zhang, Guiyong ; Sun, Tiezhi ; Shi, Chongbin ; Zhou, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cavitation</topic><topic>Cavitation flow</topic><topic>Clustering</topic><topic>Computational fluid dynamics</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Principal components analysis</topic><topic>Spatiotemporal data</topic><topic>Three dimensional flow</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Zhang, Guiyong</creatorcontrib><creatorcontrib>Sun, Tiezhi</creatorcontrib><creatorcontrib>Shi, Chongbin</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zihao</au><au>Zhang, Guiyong</au><au>Sun, Tiezhi</au><au>Shi, Chongbin</au><au>Zhou, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-03</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Computational Fluid Dynamics (CFD) generates high-dimensional spatiotemporal data. The data-driven method approach to extracting physical information from CFD has attracted widespread concern in fluid mechanics. While good results have been obtained for some benchmark problems, the performance on complex flow field problems has not been extensively studied. In this paper, we use a dimensionality reduction approach to preserve the main features of the flow field. Based on this, we perform unsupervised identification of flow field states using a clustering approach that applies data-driven analysis to the spatiotemporal structure of complex three-dimensional unsteady cavitation flows. The result shows that the data-driven method can effectively represent the changes in the spatial structure of the unsteady flow field over time and to visualize changes in the quasi-periodic state of the flow. Furthermore, we demonstrate that the combination of principal component analysis and Toeplitz inverse covariance-based clustering can identify different states of the cavitated flow field with high accuracy. This suggests that the method has great potential for application in complex flow phenomena.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0145453</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5811-0403</orcidid><orcidid>https://orcid.org/0000-0002-6994-2309</orcidid><orcidid>https://orcid.org/0000-0003-4549-6452</orcidid><orcidid>https://orcid.org/0000-0002-6569-6286</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-03, Vol.35 (3)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0145453
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Cavitation
Cavitation flow
Clustering
Computational fluid dynamics
Flow control
Fluid flow
Fluid mechanics
Principal components analysis
Spatiotemporal data
Three dimensional flow
Unsteady flow
title Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20methods%20for%20low-dimensional%20representation%20and%20state%20identification%20for%20the%20spatiotemporal%20structure%20of%20cavitation%20flow%20fields&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Wang,%20Zihao&rft.date=2023-03&rft.volume=35&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0145453&rft_dat=%3Cproquest_scita%3E2787722312%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787722312&rft_id=info:pmid/&rfr_iscdi=true