Loading…
Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields
Computational Fluid Dynamics (CFD) generates high-dimensional spatiotemporal data. The data-driven method approach to extracting physical information from CFD has attracted widespread concern in fluid mechanics. While good results have been obtained for some benchmark problems, the performance on co...
Saved in:
Published in: | Physics of fluids (1994) 2023-03, Vol.35 (3) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 35 |
creator | Wang, Zihao Zhang, Guiyong Sun, Tiezhi Shi, Chongbin Zhou, Bo |
description | Computational Fluid Dynamics (CFD) generates high-dimensional spatiotemporal data. The data-driven method approach to extracting physical information from CFD has attracted widespread concern in fluid mechanics. While good results have been obtained for some benchmark problems, the performance on complex flow field problems has not been extensively studied. In this paper, we use a dimensionality reduction approach to preserve the main features of the flow field. Based on this, we perform unsupervised identification of flow field states using a clustering approach that applies data-driven analysis to the spatiotemporal structure of complex three-dimensional unsteady cavitation flows. The result shows that the data-driven method can effectively represent the changes in the spatial structure of the unsteady flow field over time and to visualize changes in the quasi-periodic state of the flow. Furthermore, we demonstrate that the combination of principal component analysis and Toeplitz inverse covariance-based clustering can identify different states of the cavitated flow field with high accuracy. This suggests that the method has great potential for application in complex flow phenomena. |
doi_str_mv | 10.1063/5.0145453 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0145453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787722312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23</originalsourceid><addsrcrecordid>eNqdkE1LxDAQhosouH4c_AcBTwpd89Gm26Osn7DgRc8hm0zYLG1Tk3TFv-CvNqUF755m5p1nZngny64IXhLM2V25xKQoi5IdZQuCV3Vecc6Px7zCOeeMnGZnIewxxqymfJH9PMgoc-3tATrUQtw5HZBxHjXuK9e2hS5Y18kGeeg9BOiijElAstMopByQ1Um0xqqpMc7GHaDQj3WEtnc-jYfoBxUHD8gZpOTBzntMuoOMhUaHi-zEyCbA5RzPs4-nx_f1S755e35d329yxTiNuS7rqiKKsUoDwYQbVnAFfEukxLhMxra4BEmMrkustkrJpCu9qmlBFZeSsvPsetrbe_c5QIhi7wafPAZBq1VVUcrISN1MlPIuBA9G9N620n8LgsX4alGK-dWJvZ3YoGZf_4MPzv-BoteG_QKwkZCN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787722312</pqid></control><display><type>article</type><title>Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Wang, Zihao ; Zhang, Guiyong ; Sun, Tiezhi ; Shi, Chongbin ; Zhou, Bo</creator><creatorcontrib>Wang, Zihao ; Zhang, Guiyong ; Sun, Tiezhi ; Shi, Chongbin ; Zhou, Bo</creatorcontrib><description>Computational Fluid Dynamics (CFD) generates high-dimensional spatiotemporal data. The data-driven method approach to extracting physical information from CFD has attracted widespread concern in fluid mechanics. While good results have been obtained for some benchmark problems, the performance on complex flow field problems has not been extensively studied. In this paper, we use a dimensionality reduction approach to preserve the main features of the flow field. Based on this, we perform unsupervised identification of flow field states using a clustering approach that applies data-driven analysis to the spatiotemporal structure of complex three-dimensional unsteady cavitation flows. The result shows that the data-driven method can effectively represent the changes in the spatial structure of the unsteady flow field over time and to visualize changes in the quasi-periodic state of the flow. Furthermore, we demonstrate that the combination of principal component analysis and Toeplitz inverse covariance-based clustering can identify different states of the cavitated flow field with high accuracy. This suggests that the method has great potential for application in complex flow phenomena.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0145453</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cavitation ; Cavitation flow ; Clustering ; Computational fluid dynamics ; Flow control ; Fluid flow ; Fluid mechanics ; Principal components analysis ; Spatiotemporal data ; Three dimensional flow ; Unsteady flow</subject><ispartof>Physics of fluids (1994), 2023-03, Vol.35 (3)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23</citedby><cites>FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23</cites><orcidid>0000-0001-5811-0403 ; 0000-0002-6994-2309 ; 0000-0003-4549-6452 ; 0000-0002-6569-6286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1554,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Zhang, Guiyong</creatorcontrib><creatorcontrib>Sun, Tiezhi</creatorcontrib><creatorcontrib>Shi, Chongbin</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><title>Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields</title><title>Physics of fluids (1994)</title><description>Computational Fluid Dynamics (CFD) generates high-dimensional spatiotemporal data. The data-driven method approach to extracting physical information from CFD has attracted widespread concern in fluid mechanics. While good results have been obtained for some benchmark problems, the performance on complex flow field problems has not been extensively studied. In this paper, we use a dimensionality reduction approach to preserve the main features of the flow field. Based on this, we perform unsupervised identification of flow field states using a clustering approach that applies data-driven analysis to the spatiotemporal structure of complex three-dimensional unsteady cavitation flows. The result shows that the data-driven method can effectively represent the changes in the spatial structure of the unsteady flow field over time and to visualize changes in the quasi-periodic state of the flow. Furthermore, we demonstrate that the combination of principal component analysis and Toeplitz inverse covariance-based clustering can identify different states of the cavitated flow field with high accuracy. This suggests that the method has great potential for application in complex flow phenomena.</description><subject>Cavitation</subject><subject>Cavitation flow</subject><subject>Clustering</subject><subject>Computational fluid dynamics</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Principal components analysis</subject><subject>Spatiotemporal data</subject><subject>Three dimensional flow</subject><subject>Unsteady flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LxDAQhosouH4c_AcBTwpd89Gm26Osn7DgRc8hm0zYLG1Tk3TFv-CvNqUF755m5p1nZngny64IXhLM2V25xKQoi5IdZQuCV3Vecc6Px7zCOeeMnGZnIewxxqymfJH9PMgoc-3tATrUQtw5HZBxHjXuK9e2hS5Y18kGeeg9BOiijElAstMopByQ1Um0xqqpMc7GHaDQj3WEtnc-jYfoBxUHD8gZpOTBzntMuoOMhUaHi-zEyCbA5RzPs4-nx_f1S755e35d329yxTiNuS7rqiKKsUoDwYQbVnAFfEukxLhMxra4BEmMrkustkrJpCu9qmlBFZeSsvPsetrbe_c5QIhi7wafPAZBq1VVUcrISN1MlPIuBA9G9N620n8LgsX4alGK-dWJvZ3YoGZf_4MPzv-BoteG_QKwkZCN</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Wang, Zihao</creator><creator>Zhang, Guiyong</creator><creator>Sun, Tiezhi</creator><creator>Shi, Chongbin</creator><creator>Zhou, Bo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5811-0403</orcidid><orcidid>https://orcid.org/0000-0002-6994-2309</orcidid><orcidid>https://orcid.org/0000-0003-4549-6452</orcidid><orcidid>https://orcid.org/0000-0002-6569-6286</orcidid></search><sort><creationdate>202303</creationdate><title>Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields</title><author>Wang, Zihao ; Zhang, Guiyong ; Sun, Tiezhi ; Shi, Chongbin ; Zhou, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cavitation</topic><topic>Cavitation flow</topic><topic>Clustering</topic><topic>Computational fluid dynamics</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Principal components analysis</topic><topic>Spatiotemporal data</topic><topic>Three dimensional flow</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Zhang, Guiyong</creatorcontrib><creatorcontrib>Sun, Tiezhi</creatorcontrib><creatorcontrib>Shi, Chongbin</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zihao</au><au>Zhang, Guiyong</au><au>Sun, Tiezhi</au><au>Shi, Chongbin</au><au>Zhou, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-03</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Computational Fluid Dynamics (CFD) generates high-dimensional spatiotemporal data. The data-driven method approach to extracting physical information from CFD has attracted widespread concern in fluid mechanics. While good results have been obtained for some benchmark problems, the performance on complex flow field problems has not been extensively studied. In this paper, we use a dimensionality reduction approach to preserve the main features of the flow field. Based on this, we perform unsupervised identification of flow field states using a clustering approach that applies data-driven analysis to the spatiotemporal structure of complex three-dimensional unsteady cavitation flows. The result shows that the data-driven method can effectively represent the changes in the spatial structure of the unsteady flow field over time and to visualize changes in the quasi-periodic state of the flow. Furthermore, we demonstrate that the combination of principal component analysis and Toeplitz inverse covariance-based clustering can identify different states of the cavitated flow field with high accuracy. This suggests that the method has great potential for application in complex flow phenomena.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0145453</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5811-0403</orcidid><orcidid>https://orcid.org/0000-0002-6994-2309</orcidid><orcidid>https://orcid.org/0000-0003-4549-6452</orcidid><orcidid>https://orcid.org/0000-0002-6569-6286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2023-03, Vol.35 (3) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0145453 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Cavitation Cavitation flow Clustering Computational fluid dynamics Flow control Fluid flow Fluid mechanics Principal components analysis Spatiotemporal data Three dimensional flow Unsteady flow |
title | Data-driven methods for low-dimensional representation and state identification for the spatiotemporal structure of cavitation flow fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20methods%20for%20low-dimensional%20representation%20and%20state%20identification%20for%20the%20spatiotemporal%20structure%20of%20cavitation%20flow%20fields&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Wang,%20Zihao&rft.date=2023-03&rft.volume=35&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0145453&rft_dat=%3Cproquest_scita%3E2787722312%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-d59771c337de1016f346ce6b1aa005000b05ea1fd950cbccaaa0cd89242c6aa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787722312&rft_id=info:pmid/&rfr_iscdi=true |