Loading…

Enhanced adsorption and non-linear optical properties of DNA-CTAB functionalized mesoporous silica nanoparticles and their influence on enhancement of photoluminescence of Rhodamine 6G dye

We report a novel template method for synthesizing silica nanoparticles that are mesoporous as well as biocompatible. The mesoporous silica nanoparticles were synthesized using the Stober process and peptization method. We have used surface-modified deoxyribonucleic acid (DNA) with cetyl trimethyl a...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2023-05, Vol.13 (5), p.055017-055017-14
Main Authors: Bhagyasree, G. S., Reena, V. N., Abith, M., Sabari Girisun, T. C., Nithyaja, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a novel template method for synthesizing silica nanoparticles that are mesoporous as well as biocompatible. The mesoporous silica nanoparticles were synthesized using the Stober process and peptization method. We have used surface-modified deoxyribonucleic acid (DNA) with cetyl trimethyl ammonium bromide as a capping agent. The obtained silica particles were analyzed using x-ray diffraction, UV–vis spectroscopy, the Brunauer–Emmet–Teller method, scanning electron microscopy, and the open aperture Z-scan technique. The characterization results indicated that the DNA polymer’s presence influenced the formation of the silica particles. The silica particles are mesoporous, nanosized, and good adsorbent and also show enhanced non-linear optical properties when compared with existing silica nanoparticles. The solubility of the silica nanoparticles was also verified in dimethyl sulfoxide (DMSO). We have verified that the enhanced mesoporous surface area and reduced porous size of the silica nanoparticles influenced the photoluminescence of Rhodamine 6G dye in DMSO. This can be applied to lower the lasing threshold of the gain medium in lasing applications. Hence, the obtained silica nanoparticles have a variety of applications such that they can be used as adsorbents of nanosized particles, which is applicable for drug delivery purposes, bioimaging, catalytic activities, doping surface for thin film making, biosensing applications, and improvement of material quality for solar devices. The non-linear optical property of the mesoporous silica nanoparticles can be used for optical limiting applications in photonic devices.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0149009