Loading…

Density-dependent drag coefficient for gas-adsorbed particles in free-molecule flows

Gas adsorption by the spherical particles in gas–particle flows has been recently studied by Yu et al. [“Direct simulation Monte Carlo of the gas adsorption of particles in gas–particle flows,” Phys. Fluids 34, 083302 (2022)]. However, the gas-adsorption distribution on the particle surface has here...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2023-05, Vol.35 (5)
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-a05b8ea839c528173190d3b965ca6a8730ca556ef3655709d45d012965c2111f3
cites cdi_FETCH-LOGICAL-c327t-a05b8ea839c528173190d3b965ca6a8730ca556ef3655709d45d012965c2111f3
container_end_page
container_issue 5
container_start_page
container_title Physics of fluids (1994)
container_volume 35
description Gas adsorption by the spherical particles in gas–particle flows has been recently studied by Yu et al. [“Direct simulation Monte Carlo of the gas adsorption of particles in gas–particle flows,” Phys. Fluids 34, 083302 (2022)]. However, the gas-adsorption distribution on the particle surface has heretofore remained unknown. This paper addresses this knowledge gap by introducing a numerical method to calculate the gas-adsorption distribution for ellipsoidal particles in gas–particle flows. We split the particle surface into internal flat plates and calculate the gas adsorption for each internal flat plate in the gas flow. Based on this numerical method, the gas adsorption distribution for the ellipsoidal particles is reconstructed by using the direct simulation Monte Carlo method. The results show that the average adsorption by prolate particles with particle eccentricity reverses as the particle temperature increases. Moreover, we show that the density-dependent drag coefficient for particle motion in the free-molecule flow may evince gas adsorption at the particle surface. Those points could inspire the studies of dust physics in rarefied gas spaces.
doi_str_mv 10.1063/5.0149733
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0149733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821082494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-a05b8ea839c528173190d3b965ca6a8730ca556ef3655709d45d012965c2111f3</originalsourceid><addsrcrecordid>eNp9kEtrwzAQhEVpoenj0H8g6KkFpXpYsnUs6RMCvaRnoUiroOBYruRQ8u9rk5x72mXnY4cZhO4YnTOqxJOcU1bpWogzNGO00aRWSp1Pe02JUoJdoqtStpRSobmaodULdCUOB-Khh85DN2Cf7Qa7BCFEF6dDSBlvbCHWl5TX4HFv8xBdCwXHDocMQHapBbdvAYc2_ZYbdBFsW-D2NK_R99vravFBll_vn4vnJXGC1wOxVK4bsI3QTvKG1YJp6sVaK-mssk0tqLNSKghCSVlT7SvpKeOTzhljQVyj--PfPqefPZTBbNM-d6Ol4Q0f4_NKVyP1cKRcTqVkCKbPcWfzwTBqptKMNKfSRvbxyBYXBzvE1P0D_wEKDGrF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821082494</pqid></control><display><type>article</type><title>Density-dependent drag coefficient for gas-adsorbed particles in free-molecule flows</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><description>Gas adsorption by the spherical particles in gas–particle flows has been recently studied by Yu et al. [“Direct simulation Monte Carlo of the gas adsorption of particles in gas–particle flows,” Phys. Fluids 34, 083302 (2022)]. However, the gas-adsorption distribution on the particle surface has heretofore remained unknown. This paper addresses this knowledge gap by introducing a numerical method to calculate the gas-adsorption distribution for ellipsoidal particles in gas–particle flows. We split the particle surface into internal flat plates and calculate the gas adsorption for each internal flat plate in the gas flow. Based on this numerical method, the gas adsorption distribution for the ellipsoidal particles is reconstructed by using the direct simulation Monte Carlo method. The results show that the average adsorption by prolate particles with particle eccentricity reverses as the particle temperature increases. Moreover, we show that the density-dependent drag coefficient for particle motion in the free-molecule flow may evince gas adsorption at the particle surface. Those points could inspire the studies of dust physics in rarefied gas spaces.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0149733</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adsorption ; Direct simulation Monte Carlo method ; Drag coefficients ; Flat plates ; Fluid dynamics ; Gas flow ; Knudsen flow ; Mathematical analysis ; Numerical analysis ; Numerical methods ; Physics ; Rarefied gases ; Surface chemistry</subject><ispartof>Physics of fluids (1994), 2023-05, Vol.35 (5)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-a05b8ea839c528173190d3b965ca6a8730ca556ef3655709d45d012965c2111f3</citedby><cites>FETCH-LOGICAL-c327t-a05b8ea839c528173190d3b965ca6a8730ca556ef3655709d45d012965c2111f3</cites><orcidid>0000-0002-6721-0497 ; 0000-0001-8894-525X ; 0000-0002-4306-5213 ; 0009-0006-0667-7639 ; 0000-0003-3728-1945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><title>Density-dependent drag coefficient for gas-adsorbed particles in free-molecule flows</title><title>Physics of fluids (1994)</title><description>Gas adsorption by the spherical particles in gas–particle flows has been recently studied by Yu et al. [“Direct simulation Monte Carlo of the gas adsorption of particles in gas–particle flows,” Phys. Fluids 34, 083302 (2022)]. However, the gas-adsorption distribution on the particle surface has heretofore remained unknown. This paper addresses this knowledge gap by introducing a numerical method to calculate the gas-adsorption distribution for ellipsoidal particles in gas–particle flows. We split the particle surface into internal flat plates and calculate the gas adsorption for each internal flat plate in the gas flow. Based on this numerical method, the gas adsorption distribution for the ellipsoidal particles is reconstructed by using the direct simulation Monte Carlo method. The results show that the average adsorption by prolate particles with particle eccentricity reverses as the particle temperature increases. Moreover, we show that the density-dependent drag coefficient for particle motion in the free-molecule flow may evince gas adsorption at the particle surface. Those points could inspire the studies of dust physics in rarefied gas spaces.</description><subject>Adsorption</subject><subject>Direct simulation Monte Carlo method</subject><subject>Drag coefficients</subject><subject>Flat plates</subject><subject>Fluid dynamics</subject><subject>Gas flow</subject><subject>Knudsen flow</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Rarefied gases</subject><subject>Surface chemistry</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrwzAQhEVpoenj0H8g6KkFpXpYsnUs6RMCvaRnoUiroOBYruRQ8u9rk5x72mXnY4cZhO4YnTOqxJOcU1bpWogzNGO00aRWSp1Pe02JUoJdoqtStpRSobmaodULdCUOB-Khh85DN2Cf7Qa7BCFEF6dDSBlvbCHWl5TX4HFv8xBdCwXHDocMQHapBbdvAYc2_ZYbdBFsW-D2NK_R99vravFBll_vn4vnJXGC1wOxVK4bsI3QTvKG1YJp6sVaK-mssk0tqLNSKghCSVlT7SvpKeOTzhljQVyj--PfPqefPZTBbNM-d6Ol4Q0f4_NKVyP1cKRcTqVkCKbPcWfzwTBqptKMNKfSRvbxyBYXBzvE1P0D_wEKDGrF</recordid><startdate>202305</startdate><enddate>202305</enddate><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6721-0497</orcidid><orcidid>https://orcid.org/0000-0001-8894-525X</orcidid><orcidid>https://orcid.org/0000-0002-4306-5213</orcidid><orcidid>https://orcid.org/0009-0006-0667-7639</orcidid><orcidid>https://orcid.org/0000-0003-3728-1945</orcidid></search><sort><creationdate>202305</creationdate><title>Density-dependent drag coefficient for gas-adsorbed particles in free-molecule flows</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-a05b8ea839c528173190d3b965ca6a8730ca556ef3655709d45d012965c2111f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Direct simulation Monte Carlo method</topic><topic>Drag coefficients</topic><topic>Flat plates</topic><topic>Fluid dynamics</topic><topic>Gas flow</topic><topic>Knudsen flow</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Rarefied gases</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density-dependent drag coefficient for gas-adsorbed particles in free-molecule flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-05</date><risdate>2023</risdate><volume>35</volume><issue>5</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Gas adsorption by the spherical particles in gas–particle flows has been recently studied by Yu et al. [“Direct simulation Monte Carlo of the gas adsorption of particles in gas–particle flows,” Phys. Fluids 34, 083302 (2022)]. However, the gas-adsorption distribution on the particle surface has heretofore remained unknown. This paper addresses this knowledge gap by introducing a numerical method to calculate the gas-adsorption distribution for ellipsoidal particles in gas–particle flows. We split the particle surface into internal flat plates and calculate the gas adsorption for each internal flat plate in the gas flow. Based on this numerical method, the gas adsorption distribution for the ellipsoidal particles is reconstructed by using the direct simulation Monte Carlo method. The results show that the average adsorption by prolate particles with particle eccentricity reverses as the particle temperature increases. Moreover, we show that the density-dependent drag coefficient for particle motion in the free-molecule flow may evince gas adsorption at the particle surface. Those points could inspire the studies of dust physics in rarefied gas spaces.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0149733</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6721-0497</orcidid><orcidid>https://orcid.org/0000-0001-8894-525X</orcidid><orcidid>https://orcid.org/0000-0002-4306-5213</orcidid><orcidid>https://orcid.org/0009-0006-0667-7639</orcidid><orcidid>https://orcid.org/0000-0003-3728-1945</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-05, Vol.35 (5)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0149733
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Adsorption
Direct simulation Monte Carlo method
Drag coefficients
Flat plates
Fluid dynamics
Gas flow
Knudsen flow
Mathematical analysis
Numerical analysis
Numerical methods
Physics
Rarefied gases
Surface chemistry
title Density-dependent drag coefficient for gas-adsorbed particles in free-molecule flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density-dependent%20drag%20coefficient%20for%20gas-adsorbed%20particles%20in%20free-molecule%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.date=2023-05&rft.volume=35&rft.issue=5&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0149733&rft_dat=%3Cproquest_scita%3E2821082494%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-a05b8ea839c528173190d3b965ca6a8730ca556ef3655709d45d012965c2111f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821082494&rft_id=info:pmid/&rfr_iscdi=true