Loading…

Large eddy simulation of combustion instability in a subcritical hydrogen peroxide/kerosene liquid rocket engine: Intermittency route to period-2 thermoacoustic instability

This paper presents the first numerical evidence of an intermittency route to period-2 thermoacoustic instability in a subcritical single-element liquid rocket engine burning hydrogen peroxide/kerosene as we decrease the equivalence ratio (ϕ) from fuel-rich to fuel-lean. To achieve this, three-dimen...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2023-06, Vol.35 (6)
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the first numerical evidence of an intermittency route to period-2 thermoacoustic instability in a subcritical single-element liquid rocket engine burning hydrogen peroxide/kerosene as we decrease the equivalence ratio (ϕ) from fuel-rich to fuel-lean. To achieve this, three-dimensional compressible large eddy simulation algorithms combined with the Euler–Lagrangian framework are used. A one-equation eddy sub-grid turbulence model with a partially stirred reactor sub-grid combustion model is employed to simulate the spray turbulent combustion process in a high-pressure liquid-fueled combustor based on open-source platform OpenFOAM. This paper focuses on examining the transition process of the dynamical states in the thermoacoustic system and the synchronization between multiple subsystems. The results indicate that, as the equivalence ratio reduces continuously (1.5 ≤ ϕ ≤ 0.5), the system dynamics shift from period-1 oscillations (ϕ = 1.5) to period-2 oscillations (ϕ = 0.5) via intermittency (1.3 ≤ ϕ ≤ 0.9). Under the equivalence ratio of 0.7 (ϕ = 0.7), a transient mode switching between period-1 and period-2 was also observed. The synchronization processes between the pressure and combustion subsystems in terms of phase-locking and frequency-locking are responsible for the emergence of complex dynamical states. The cycle snapshots analysis also provides more details on the synchronization processes between the pressure and the multiple subsystems, such as vortex dynamics, mixture fraction, and combustion heat release. In summary, this paper sheds light on the complex non-linear thermoacoustic oscillations and the underlying physical mechanisms related to the two-phase flow of spray combustion in liquid rocket engines using three-dimensional large eddy simulations, paving the way for developing passive or active control methods.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0151462