Loading…

Roll waves as relaxation oscillations

Granular roll waves consist of a long rising flank, followed by an abrupt fall. Based on this observation, we draw a parallel between roll waves and relaxation oscillations. From the generalized Saint-Venant equations, we derive a dynamical system governing the shape of the waves. Casting this syste...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2023-06, Vol.35 (6)
Main Authors: Razis, Dimitrios, Kanellopoulos, Giorgos, van der Weele, Ko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-6f4057ceb81d76344b1cda14928f70f20848ac35e209e66a15729ffc4112f2683
cites cdi_FETCH-LOGICAL-c327t-6f4057ceb81d76344b1cda14928f70f20848ac35e209e66a15729ffc4112f2683
container_end_page
container_issue 6
container_start_page
container_title Physics of fluids (1994)
container_volume 35
creator Razis, Dimitrios
Kanellopoulos, Giorgos
van der Weele, Ko
description Granular roll waves consist of a long rising flank, followed by an abrupt fall. Based on this observation, we draw a parallel between roll waves and relaxation oscillations. From the generalized Saint-Venant equations, we derive a dynamical system governing the shape of the waves. Casting this system in the Liénard form, custom-made for studying relaxation oscillations, we find an analytical expression for the wavelength of roll waves as a function of their amplitude.
doi_str_mv 10.1063/5.0152549
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0152549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828948045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6f4057ceb81d76344b1cda14928f70f20848ac35e209e66a15729ffc4112f2683</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKsH_8GCeFDY-ubrTXKUUj-gIIieQ5omsCV2a7L149-77fbsaebwMMMMIZcUJhSQ38kJUMmkMEdkREGbWiHi8c4rqBE5PSVnpawAgBuGI3L92qZUfbuvUCpXqhyS-3Fd066rtvgmpb0v5-QkulTCxUHH5P1h9jZ9qucvj8_T-3ntOVNdjVGAVD4sNF0q5EIsqF86KgzTUUFkoIV2nsvAwARER6ViJkYvKGWRoeZjcjXkbnL7uQ2ls6t2m9d9pWWaaSM0CNlTNwPlc1tKDtFucvPh8q-lYHcvWGkPL_Ts7cD2a7r9mH_gP0fKWaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828948045</pqid></control><display><type>article</type><title>Roll waves as relaxation oscillations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Razis, Dimitrios ; Kanellopoulos, Giorgos ; van der Weele, Ko</creator><creatorcontrib>Razis, Dimitrios ; Kanellopoulos, Giorgos ; van der Weele, Ko</creatorcontrib><description>Granular roll waves consist of a long rising flank, followed by an abrupt fall. Based on this observation, we draw a parallel between roll waves and relaxation oscillations. From the generalized Saint-Venant equations, we derive a dynamical system governing the shape of the waves. Casting this system in the Liénard form, custom-made for studying relaxation oscillations, we find an analytical expression for the wavelength of roll waves as a function of their amplitude.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0152549</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Dynamical systems ; Fluid dynamics ; Physics ; Relaxation oscillations ; Water waves</subject><ispartof>Physics of fluids (1994), 2023-06, Vol.35 (6)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-6f4057ceb81d76344b1cda14928f70f20848ac35e209e66a15729ffc4112f2683</citedby><cites>FETCH-LOGICAL-c327t-6f4057ceb81d76344b1cda14928f70f20848ac35e209e66a15729ffc4112f2683</cites><orcidid>0000-0002-6826-7997 ; 0000-0002-1116-3804 ; 0000-0002-4924-7405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1553,27901,27902</link.rule.ids></links><search><creatorcontrib>Razis, Dimitrios</creatorcontrib><creatorcontrib>Kanellopoulos, Giorgos</creatorcontrib><creatorcontrib>van der Weele, Ko</creatorcontrib><title>Roll waves as relaxation oscillations</title><title>Physics of fluids (1994)</title><description>Granular roll waves consist of a long rising flank, followed by an abrupt fall. Based on this observation, we draw a parallel between roll waves and relaxation oscillations. From the generalized Saint-Venant equations, we derive a dynamical system governing the shape of the waves. Casting this system in the Liénard form, custom-made for studying relaxation oscillations, we find an analytical expression for the wavelength of roll waves as a function of their amplitude.</description><subject>Dynamical systems</subject><subject>Fluid dynamics</subject><subject>Physics</subject><subject>Relaxation oscillations</subject><subject>Water waves</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWKsH_8GCeFDY-ubrTXKUUj-gIIieQ5omsCV2a7L149-77fbsaebwMMMMIZcUJhSQ38kJUMmkMEdkREGbWiHi8c4rqBE5PSVnpawAgBuGI3L92qZUfbuvUCpXqhyS-3Fd066rtvgmpb0v5-QkulTCxUHH5P1h9jZ9qucvj8_T-3ntOVNdjVGAVD4sNF0q5EIsqF86KgzTUUFkoIV2nsvAwARER6ViJkYvKGWRoeZjcjXkbnL7uQ2ls6t2m9d9pWWaaSM0CNlTNwPlc1tKDtFucvPh8q-lYHcvWGkPL_Ts7cD2a7r9mH_gP0fKWaA</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Razis, Dimitrios</creator><creator>Kanellopoulos, Giorgos</creator><creator>van der Weele, Ko</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6826-7997</orcidid><orcidid>https://orcid.org/0000-0002-1116-3804</orcidid><orcidid>https://orcid.org/0000-0002-4924-7405</orcidid></search><sort><creationdate>202306</creationdate><title>Roll waves as relaxation oscillations</title><author>Razis, Dimitrios ; Kanellopoulos, Giorgos ; van der Weele, Ko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6f4057ceb81d76344b1cda14928f70f20848ac35e209e66a15729ffc4112f2683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dynamical systems</topic><topic>Fluid dynamics</topic><topic>Physics</topic><topic>Relaxation oscillations</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razis, Dimitrios</creatorcontrib><creatorcontrib>Kanellopoulos, Giorgos</creatorcontrib><creatorcontrib>van der Weele, Ko</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razis, Dimitrios</au><au>Kanellopoulos, Giorgos</au><au>van der Weele, Ko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roll waves as relaxation oscillations</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-06</date><risdate>2023</risdate><volume>35</volume><issue>6</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Granular roll waves consist of a long rising flank, followed by an abrupt fall. Based on this observation, we draw a parallel between roll waves and relaxation oscillations. From the generalized Saint-Venant equations, we derive a dynamical system governing the shape of the waves. Casting this system in the Liénard form, custom-made for studying relaxation oscillations, we find an analytical expression for the wavelength of roll waves as a function of their amplitude.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0152549</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6826-7997</orcidid><orcidid>https://orcid.org/0000-0002-1116-3804</orcidid><orcidid>https://orcid.org/0000-0002-4924-7405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-06, Vol.35 (6)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0152549
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Dynamical systems
Fluid dynamics
Physics
Relaxation oscillations
Water waves
title Roll waves as relaxation oscillations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roll%20waves%20as%20relaxation%20oscillations&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Razis,%20Dimitrios&rft.date=2023-06&rft.volume=35&rft.issue=6&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0152549&rft_dat=%3Cproquest_scita%3E2828948045%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-6f4057ceb81d76344b1cda14928f70f20848ac35e209e66a15729ffc4112f2683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828948045&rft_id=info:pmid/&rfr_iscdi=true