Loading…
Comprehensive excited state carrier dynamics of 2D selenium: One-photon and multi-photon absorption regimes
Semiconductors play a critical role in optoelectronic applications, and recent research has identified group-VI 2D semiconductors as promising materials for this purpose. Here, we report the comprehensive excited state carrier dynamics of bilayer, two-dimensional (2D) selenium (Se) in one-photon and...
Saved in:
Published in: | Applied physics letters 2023-07, Vol.123 (2) |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Semiconductors play a critical role in optoelectronic applications, and recent research has identified group-VI 2D semiconductors as promising materials for this purpose. Here, we report the comprehensive excited state carrier dynamics of bilayer, two-dimensional (2D) selenium (Se) in one-photon and multi-photon absorption regimes using transient reflection (TR) spectroscopy. Carrier lifetime obtained from TR measurement is used to theoretically predict the photo-responsivity for 2D Se photo-detectors operating in the one-photon-absorption regime. We also calculate a giant two-photon absorption cross section of
2.9
×
10
5
GM at 750 nm hinting possible application of 2D Se as a sub-bandgap photo-detector. The carrier recombination process is dominated by surface and sub-surface defect states in one- and multi-photon absorption regimes, respectively, resulting nearly one order increased carrier lifetime in a three-photon-absorption regime (1700 ps) compared to a one-photon-absorption regime (103 ps). Femtosecond Z-scan measurement shows saturation behavior for above bandgap excitation, further indicating the possibility of 2D Se as a saturable absorber material for passive Q-switching. Our study provides comprehensive insight into the excited state carrier dynamics of bilayer 2D Se and highlights its potential as a versatile material for various linear and non-linear optoelectronic applications. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0156843 |