Loading…

Tunable flatband plasmonic quasi-bound states in the continuum based on graphene-assisted metasurfaces

Bound states in the continuum (BICs) of plasmonic systems offer a powerful method for enhancing light–matter interaction at the nanoscale. The recent emergence of flatband quasi-BICs has alleviated the limitation of the incident angle of the excitation light on generating high-quality-factor (high-Q...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2023-09, Vol.123 (12)
Main Authors: Wang, Zhuo, Wang, Yue, Cheng, Zhi, Qu, Jiaqi, Cui, Mingjie, Huang, Dongmei, Yu, Changyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bound states in the continuum (BICs) of plasmonic systems offer a powerful method for enhancing light–matter interaction at the nanoscale. The recent emergence of flatband quasi-BICs has alleviated the limitation of the incident angle of the excitation light on generating high-quality-factor (high-Q-factor) resonances, which makes it feasible to produce substantial near-field enhancement by focused light. However, the current works are limited to passive systems with fixed amplitude and Q-factor, hindering the dynamic tunability of light field enhancement. Here, we design a plasmonic metasurface integrated with monolayer graphene to achieve tunable flatband quasi-BICs. Under the illumination of a tightly focused transverse-magnetic wave, our simulations show that adjusting the chemical potential of graphene can increase Q-factor from 52.5 to 75.9 and improve absorption amplitude from 81% to 95%. These results pave the way for dynamically adjustable near-field enhancement with tightly focused light.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0166140