Loading…

Impact of diffusion on the ionisation channel of a diamond XBPM® detector

Nowadays in Synchrotron Light Sources, the state-of-the-art beam position monitors are Diamond XBPM® [1, 2]. They are used in experimental X-ray beam lines for precision measurements and fast control of the beam position and intensity. Diamond is the best-suited low-absorbing detector material due t...

Full description

Saved in:
Bibliographic Details
Main Authors: Christina, Weiss, Helmut, Frais-Kölbl, Erich, Griesmayer, Pavel, Kavrigin, Julian, Melbinger
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2990
creator Christina, Weiss
Helmut, Frais-Kölbl
Erich, Griesmayer
Pavel, Kavrigin
Julian, Melbinger
description Nowadays in Synchrotron Light Sources, the state-of-the-art beam position monitors are Diamond XBPM® [1, 2]. They are used in experimental X-ray beam lines for precision measurements and fast control of the beam position and intensity. Diamond is the best-suited low-absorbing detector material due to its low atomic number Z and the use of pure diamond yields a linear signal response. For hard X-rays the application of Diamond XBPM® has no limit. The limits at low photon energies are determined by the thickness of the sensor and the transmission. Diamond detectors can be produced as thin as 3 μm [3], which is adequate with 1.6 keV X-Rays at 50% transmission. Standard thicknesses are 10 μm for 4.3 keV, 20 μm for 5.4 keV and 50 μm for 7.2 keV at 90% transmission. The superior thermal conductivity of diamond allows the highest ionisation levels and highest X-ray beam intensities. Diamond XBPM® are four-quadrant measurement devices. The technological limit for the gap size between the pads is 1 μm. With Diamond XBPM®, however, even beams as small as 60 nm were measured with the highest precision. This is helped by the diffusion of the ionization charge. Diffusion causes a lateral widening of the ionisation channel which increases the measurement precision for small beams. In this paper, we discuss the effect of charge-carrier diffusion in Diamond XBPM®.
doi_str_mv 10.1063/5.0168374
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0168374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869342803</sourcerecordid><originalsourceid>FETCH-LOGICAL-p968-ee2f07a66777d0cbf7a942717231d8b91cd8723b2b3eda0f6ccf316d53643d513</originalsourceid><addsrcrecordid>eNotkMtKw0AUhgdRMFYXvkHAnZA6l8xtqcVqpaKLLrobJnOhKc3FzGThS_kQPpkTWzhwfg4f_-H_AbhFcI4gIw90DhEThJdnIEOUooIzxM5BBqEsC1yS7SW4CmEPIZaciwy8rZpem5h3Pre192OouzZPE3cuT7IOOk4Xs9Nt6w4TphOom661-fbp8_33J7cuOhO74RpceH0I7ua0Z2CzfN4sXov1x8tq8bgueslE4Rz2kGvGOOcWmspzLUvMEccEWVFJZKxIusIVcVZDz4zxBDFLCSuJpYjMwN3Rth-6r9GFqPbdOLTpo8KCSVJiAUmi7o9UMHX8z6D6oW708K0QVFNViqpTVeQPTWRafQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2869342803</pqid></control><display><type>conference_proceeding</type><title>Impact of diffusion on the ionisation channel of a diamond XBPM® detector</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Christina, Weiss ; Helmut, Frais-Kölbl ; Erich, Griesmayer ; Pavel, Kavrigin ; Julian, Melbinger</creator><contributor>Shiu, Hung-Wei ; Chuang, Tzu-Hung ; Lin, Bi-Hsuan ; Wei, Der-Hsin</contributor><creatorcontrib>Christina, Weiss ; Helmut, Frais-Kölbl ; Erich, Griesmayer ; Pavel, Kavrigin ; Julian, Melbinger ; Shiu, Hung-Wei ; Chuang, Tzu-Hung ; Lin, Bi-Hsuan ; Wei, Der-Hsin</creatorcontrib><description>Nowadays in Synchrotron Light Sources, the state-of-the-art beam position monitors are Diamond XBPM® [1, 2]. They are used in experimental X-ray beam lines for precision measurements and fast control of the beam position and intensity. Diamond is the best-suited low-absorbing detector material due to its low atomic number Z and the use of pure diamond yields a linear signal response. For hard X-rays the application of Diamond XBPM® has no limit. The limits at low photon energies are determined by the thickness of the sensor and the transmission. Diamond detectors can be produced as thin as 3 μm [3], which is adequate with 1.6 keV X-Rays at 50% transmission. Standard thicknesses are 10 μm for 4.3 keV, 20 μm for 5.4 keV and 50 μm for 7.2 keV at 90% transmission. The superior thermal conductivity of diamond allows the highest ionisation levels and highest X-ray beam intensities. Diamond XBPM® are four-quadrant measurement devices. The technological limit for the gap size between the pads is 1 μm. With Diamond XBPM®, however, even beams as small as 60 nm were measured with the highest precision. This is helped by the diffusion of the ionization charge. Diffusion causes a lateral widening of the ionisation channel which increases the measurement precision for small beams. In this paper, we discuss the effect of charge-carrier diffusion in Diamond XBPM®.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0168374</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Atomic properties ; Current carriers ; Diamonds ; Electrons ; Ion charge ; Ionization ; Light sources ; Measuring instruments ; Position measurement ; Synchrotrons ; Thermal conductivity ; Thickness ; X-rays</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2990 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Shiu, Hung-Wei</contributor><contributor>Chuang, Tzu-Hung</contributor><contributor>Lin, Bi-Hsuan</contributor><contributor>Wei, Der-Hsin</contributor><creatorcontrib>Christina, Weiss</creatorcontrib><creatorcontrib>Helmut, Frais-Kölbl</creatorcontrib><creatorcontrib>Erich, Griesmayer</creatorcontrib><creatorcontrib>Pavel, Kavrigin</creatorcontrib><creatorcontrib>Julian, Melbinger</creatorcontrib><title>Impact of diffusion on the ionisation channel of a diamond XBPM® detector</title><title>AIP Conference Proceedings</title><description>Nowadays in Synchrotron Light Sources, the state-of-the-art beam position monitors are Diamond XBPM® [1, 2]. They are used in experimental X-ray beam lines for precision measurements and fast control of the beam position and intensity. Diamond is the best-suited low-absorbing detector material due to its low atomic number Z and the use of pure diamond yields a linear signal response. For hard X-rays the application of Diamond XBPM® has no limit. The limits at low photon energies are determined by the thickness of the sensor and the transmission. Diamond detectors can be produced as thin as 3 μm [3], which is adequate with 1.6 keV X-Rays at 50% transmission. Standard thicknesses are 10 μm for 4.3 keV, 20 μm for 5.4 keV and 50 μm for 7.2 keV at 90% transmission. The superior thermal conductivity of diamond allows the highest ionisation levels and highest X-ray beam intensities. Diamond XBPM® are four-quadrant measurement devices. The technological limit for the gap size between the pads is 1 μm. With Diamond XBPM®, however, even beams as small as 60 nm were measured with the highest precision. This is helped by the diffusion of the ionization charge. Diffusion causes a lateral widening of the ionisation channel which increases the measurement precision for small beams. In this paper, we discuss the effect of charge-carrier diffusion in Diamond XBPM®.</description><subject>Atomic properties</subject><subject>Current carriers</subject><subject>Diamonds</subject><subject>Electrons</subject><subject>Ion charge</subject><subject>Ionization</subject><subject>Light sources</subject><subject>Measuring instruments</subject><subject>Position measurement</subject><subject>Synchrotrons</subject><subject>Thermal conductivity</subject><subject>Thickness</subject><subject>X-rays</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtKw0AUhgdRMFYXvkHAnZA6l8xtqcVqpaKLLrobJnOhKc3FzGThS_kQPpkTWzhwfg4f_-H_AbhFcI4gIw90DhEThJdnIEOUooIzxM5BBqEsC1yS7SW4CmEPIZaciwy8rZpem5h3Pre192OouzZPE3cuT7IOOk4Xs9Nt6w4TphOom661-fbp8_33J7cuOhO74RpceH0I7ua0Z2CzfN4sXov1x8tq8bgueslE4Rz2kGvGOOcWmspzLUvMEccEWVFJZKxIusIVcVZDz4zxBDFLCSuJpYjMwN3Rth-6r9GFqPbdOLTpo8KCSVJiAUmi7o9UMHX8z6D6oW708K0QVFNViqpTVeQPTWRafQ</recordid><startdate>20230927</startdate><enddate>20230927</enddate><creator>Christina, Weiss</creator><creator>Helmut, Frais-Kölbl</creator><creator>Erich, Griesmayer</creator><creator>Pavel, Kavrigin</creator><creator>Julian, Melbinger</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230927</creationdate><title>Impact of diffusion on the ionisation channel of a diamond XBPM® detector</title><author>Christina, Weiss ; Helmut, Frais-Kölbl ; Erich, Griesmayer ; Pavel, Kavrigin ; Julian, Melbinger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p968-ee2f07a66777d0cbf7a942717231d8b91cd8723b2b3eda0f6ccf316d53643d513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic properties</topic><topic>Current carriers</topic><topic>Diamonds</topic><topic>Electrons</topic><topic>Ion charge</topic><topic>Ionization</topic><topic>Light sources</topic><topic>Measuring instruments</topic><topic>Position measurement</topic><topic>Synchrotrons</topic><topic>Thermal conductivity</topic><topic>Thickness</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christina, Weiss</creatorcontrib><creatorcontrib>Helmut, Frais-Kölbl</creatorcontrib><creatorcontrib>Erich, Griesmayer</creatorcontrib><creatorcontrib>Pavel, Kavrigin</creatorcontrib><creatorcontrib>Julian, Melbinger</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christina, Weiss</au><au>Helmut, Frais-Kölbl</au><au>Erich, Griesmayer</au><au>Pavel, Kavrigin</au><au>Julian, Melbinger</au><au>Shiu, Hung-Wei</au><au>Chuang, Tzu-Hung</au><au>Lin, Bi-Hsuan</au><au>Wei, Der-Hsin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Impact of diffusion on the ionisation channel of a diamond XBPM® detector</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-09-27</date><risdate>2023</risdate><volume>2990</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Nowadays in Synchrotron Light Sources, the state-of-the-art beam position monitors are Diamond XBPM® [1, 2]. They are used in experimental X-ray beam lines for precision measurements and fast control of the beam position and intensity. Diamond is the best-suited low-absorbing detector material due to its low atomic number Z and the use of pure diamond yields a linear signal response. For hard X-rays the application of Diamond XBPM® has no limit. The limits at low photon energies are determined by the thickness of the sensor and the transmission. Diamond detectors can be produced as thin as 3 μm [3], which is adequate with 1.6 keV X-Rays at 50% transmission. Standard thicknesses are 10 μm for 4.3 keV, 20 μm for 5.4 keV and 50 μm for 7.2 keV at 90% transmission. The superior thermal conductivity of diamond allows the highest ionisation levels and highest X-ray beam intensities. Diamond XBPM® are four-quadrant measurement devices. The technological limit for the gap size between the pads is 1 μm. With Diamond XBPM®, however, even beams as small as 60 nm were measured with the highest precision. This is helped by the diffusion of the ionization charge. Diffusion causes a lateral widening of the ionisation channel which increases the measurement precision for small beams. In this paper, we discuss the effect of charge-carrier diffusion in Diamond XBPM®.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0168374</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2990 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0168374
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Atomic properties
Current carriers
Diamonds
Electrons
Ion charge
Ionization
Light sources
Measuring instruments
Position measurement
Synchrotrons
Thermal conductivity
Thickness
X-rays
title Impact of diffusion on the ionisation channel of a diamond XBPM® detector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Impact%20of%20diffusion%20on%20the%20ionisation%20channel%20of%20a%20diamond%20XBPM%C2%AE%20detector&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Christina,%20Weiss&rft.date=2023-09-27&rft.volume=2990&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0168374&rft_dat=%3Cproquest_scita%3E2869342803%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p968-ee2f07a66777d0cbf7a942717231d8b91cd8723b2b3eda0f6ccf316d53643d513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869342803&rft_id=info:pmid/&rfr_iscdi=true