Loading…

Unravelling diverse spatiotemporal orders in chlorine dioxide-iodine-malonic acid reaction-diffusion system through circularly polarized electric field and photo-illumination

Designing and predicting self-organized pattern formation in out-of-equilibrium chemical and biochemical reactions holds fundamental significance. External perturbations like light and electric fields exert a crucial influence on reaction-diffusion systems involving ionic species. While the separate...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2023-11, Vol.159 (17)
Main Authors: Maiti, Tarpan, Ghosh, Pushpita
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Designing and predicting self-organized pattern formation in out-of-equilibrium chemical and biochemical reactions holds fundamental significance. External perturbations like light and electric fields exert a crucial influence on reaction-diffusion systems involving ionic species. While the separate impacts of light and electric fields have been extensively studied, comprehending their combined effects on spatiotemporal dynamics is paramount for designing versatile spatial orders. Here, we theoretically investigate the spatiotemporal dynamics of chlorine dioxide-iodine-malonic acid reaction-diffusion system under photo-illumination and circularly polarized electric field (CPEF). By applying CPEF at varying intensities and frequencies, we observe the predominant emergence of oscillating hexagonal spot-like patterns from homogeneous stable steady states. Furthermore, our study unveils a spectrum of intriguing spatiotemporal instabilities, encompassing stripe-like patterns, oscillating dumbbell-shaped patterns, spot-like instabilities with square-based symmetry, and irregular chaotic patterns. However, when we introduce periodic photo-illumination to the hexagonal spot-like instabilities induced by CPEF in homogeneous steady states, we observe periodic size fluctuations. Additionally, the stripe-like instabilities undergo alternating transitions between hexagonal spots and stripes. Notably, within the Turing region, the interplay between these two external influences leads to the emergence of distinct superlattice patterns characterized by hexagonal-and square-based symmetry. These patterns include parallel lines of spots, target-like formations, black-eye patterns, and other captivating structures. Remarkably, the simple perturbation of the system through the application of these two external fields offers a versatile tool for generating a wide range of pattern-forming instabilities, thereby opening up exciting possibilities for future experimental validation.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0171763