Loading…
Use of FLOSIC for understanding anion-solvent interactions
An Achille’s heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighborin...
Saved in:
Published in: | The Journal of chemical physics 2023-10, Vol.159 (15) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-c0f24c8eaac7119150acdce14b05703981b8d624087398686527a1df1b2a25893 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-c0f24c8eaac7119150acdce14b05703981b8d624087398686527a1df1b2a25893 |
container_end_page | |
container_issue | 15 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 159 |
creator | Pederson, Mark R. Withanage, Kushantha P. K. Hooshmand, Zahra Johnson, Alex I. Baruah, Tunna Yamamoto, Yoh Zope, Rajendra R. Kao, Der-You Shukla, Priyanka B. Johnson, J. Karl Peralta, Juan E. Jackson, Koblar A. |
description | An Achille’s heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighboring complexes that are not expected to accept charge. A trianionic example, [Cr(C2O4)3]3−, is of interest for constraining models linking Cr isotope ratios in rock samples to oxygen levels in Earth’s atmosphere over geological timescales. Here we describe how crowd sourcing can be used to carry out self-consistent Fermi–Löwdin–Orbital-Self-Interaction corrected calculations (FLOSIC) on this trianion in solution. The calculations give a physically correct description of the electronic structure of the trianion and water. In contrast, uncorrected local density approximation (LDA) calculations result in approximately half of the anion charge being transferred to the water bath due to the effects of self-interaction error. Use of group-theory and the intrinsic sparsity of the theory enables calculations roughly 125 times faster than our initial implementation in the large N limit reached here. By integrating charge density densities and Coulomb potentials over regions of space and analyzing core-level shifts of the Cr and O atoms as a function of position and functional, we unambiguously show that FLOSIC, relative to LDA, reverses incorrect solute-solvent charge transfer in the trianion-water complex. In comparison to other functionals investigated herein, including Hartree–Fock and the local density approximation, the FLOSIC Cr 1s eigenvalues provide the best agreement with experimental core ionization energies. |
doi_str_mv | 10.1063/5.0172300 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0172300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879413937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-c0f24c8eaac7119150acdce14b05703981b8d624087398686527a1df1b2a25893</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4EWFrTPZ3Xx4k2K1UOhBe17SbFa2bJOaZAX_fVPakwdPwwwPw8xLyC3CBIEVT9UEkNMC4IyMEITMOZNwTkYAFHPJgF2SqxA2AAdWjsjzKpjMtdlssfyYT7PW-WywjfEhKtt09itTtnM2D67_MTZmnY3GKx3TLFyTi1b1wdyc6pisZq-f0_d8sXybT18WuS4YxFxDS0stjFKaI0qsQOlGGyzXUHEopMC1aBgtQfDUMMEqyhU2La6popWQxZjcH_fuvPseTIj1tgva9L2yxg2hpkIAQvqVJnr3h27c4G26LikuSyxkwZN6OCrtXQjetPXOd1vlf2uE-pBiXdWnFJN9PNqgu6gOf_-D99ApbnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879413937</pqid></control><display><type>article</type><title>Use of FLOSIC for understanding anion-solvent interactions</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Pederson, Mark R. ; Withanage, Kushantha P. K. ; Hooshmand, Zahra ; Johnson, Alex I. ; Baruah, Tunna ; Yamamoto, Yoh ; Zope, Rajendra R. ; Kao, Der-You ; Shukla, Priyanka B. ; Johnson, J. Karl ; Peralta, Juan E. ; Jackson, Koblar A.</creator><creatorcontrib>Pederson, Mark R. ; Withanage, Kushantha P. K. ; Hooshmand, Zahra ; Johnson, Alex I. ; Baruah, Tunna ; Yamamoto, Yoh ; Zope, Rajendra R. ; Kao, Der-You ; Shukla, Priyanka B. ; Johnson, J. Karl ; Peralta, Juan E. ; Jackson, Koblar A.</creatorcontrib><description>An Achille’s heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighboring complexes that are not expected to accept charge. A trianionic example, [Cr(C2O4)3]3−, is of interest for constraining models linking Cr isotope ratios in rock samples to oxygen levels in Earth’s atmosphere over geological timescales. Here we describe how crowd sourcing can be used to carry out self-consistent Fermi–Löwdin–Orbital-Self-Interaction corrected calculations (FLOSIC) on this trianion in solution. The calculations give a physically correct description of the electronic structure of the trianion and water. In contrast, uncorrected local density approximation (LDA) calculations result in approximately half of the anion charge being transferred to the water bath due to the effects of self-interaction error. Use of group-theory and the intrinsic sparsity of the theory enables calculations roughly 125 times faster than our initial implementation in the large N limit reached here. By integrating charge density densities and Coulomb potentials over regions of space and analyzing core-level shifts of the Cr and O atoms as a function of position and functional, we unambiguously show that FLOSIC, relative to LDA, reverses incorrect solute-solvent charge transfer in the trianion-water complex. In comparison to other functionals investigated herein, including Hartree–Fock and the local density approximation, the FLOSIC Cr 1s eigenvalues provide the best agreement with experimental core ionization energies.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0172300</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anions ; Approximation ; Atmospheric models ; Charge density ; Charge transfer ; Eigenvalues ; Electronic structure ; Energy levels ; Isotope ratios ; Mathematical analysis ; Solvents ; Water baths</subject><ispartof>The Journal of chemical physics, 2023-10, Vol.159 (15)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-c0f24c8eaac7119150acdce14b05703981b8d624087398686527a1df1b2a25893</citedby><cites>FETCH-LOGICAL-c360t-c0f24c8eaac7119150acdce14b05703981b8d624087398686527a1df1b2a25893</cites><orcidid>0000-0003-2849-8472 ; 0000-0002-5052-5505 ; 0000-0002-1415-7565 ; 0000-0002-3608-8003 ; 0000-0002-5342-7978 ; 0000-0002-1236-7438 ; 0000-0002-9599-206X ; 0000-0002-4626-6491 ; 0000-0002-2602-8146 ; 0000-0002-3596-6409 ; 0000-0002-9965-5247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0172300$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Pederson, Mark R.</creatorcontrib><creatorcontrib>Withanage, Kushantha P. K.</creatorcontrib><creatorcontrib>Hooshmand, Zahra</creatorcontrib><creatorcontrib>Johnson, Alex I.</creatorcontrib><creatorcontrib>Baruah, Tunna</creatorcontrib><creatorcontrib>Yamamoto, Yoh</creatorcontrib><creatorcontrib>Zope, Rajendra R.</creatorcontrib><creatorcontrib>Kao, Der-You</creatorcontrib><creatorcontrib>Shukla, Priyanka B.</creatorcontrib><creatorcontrib>Johnson, J. Karl</creatorcontrib><creatorcontrib>Peralta, Juan E.</creatorcontrib><creatorcontrib>Jackson, Koblar A.</creatorcontrib><title>Use of FLOSIC for understanding anion-solvent interactions</title><title>The Journal of chemical physics</title><description>An Achille’s heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighboring complexes that are not expected to accept charge. A trianionic example, [Cr(C2O4)3]3−, is of interest for constraining models linking Cr isotope ratios in rock samples to oxygen levels in Earth’s atmosphere over geological timescales. Here we describe how crowd sourcing can be used to carry out self-consistent Fermi–Löwdin–Orbital-Self-Interaction corrected calculations (FLOSIC) on this trianion in solution. The calculations give a physically correct description of the electronic structure of the trianion and water. In contrast, uncorrected local density approximation (LDA) calculations result in approximately half of the anion charge being transferred to the water bath due to the effects of self-interaction error. Use of group-theory and the intrinsic sparsity of the theory enables calculations roughly 125 times faster than our initial implementation in the large N limit reached here. By integrating charge density densities and Coulomb potentials over regions of space and analyzing core-level shifts of the Cr and O atoms as a function of position and functional, we unambiguously show that FLOSIC, relative to LDA, reverses incorrect solute-solvent charge transfer in the trianion-water complex. In comparison to other functionals investigated herein, including Hartree–Fock and the local density approximation, the FLOSIC Cr 1s eigenvalues provide the best agreement with experimental core ionization energies.</description><subject>Anions</subject><subject>Approximation</subject><subject>Atmospheric models</subject><subject>Charge density</subject><subject>Charge transfer</subject><subject>Eigenvalues</subject><subject>Electronic structure</subject><subject>Energy levels</subject><subject>Isotope ratios</subject><subject>Mathematical analysis</subject><subject>Solvents</subject><subject>Water baths</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90E1LAzEQBuAgCtbqwX-w4EWFrTPZ3Xx4k2K1UOhBe17SbFa2bJOaZAX_fVPakwdPwwwPw8xLyC3CBIEVT9UEkNMC4IyMEITMOZNwTkYAFHPJgF2SqxA2AAdWjsjzKpjMtdlssfyYT7PW-WywjfEhKtt09itTtnM2D67_MTZmnY3GKx3TLFyTi1b1wdyc6pisZq-f0_d8sXybT18WuS4YxFxDS0stjFKaI0qsQOlGGyzXUHEopMC1aBgtQfDUMMEqyhU2La6popWQxZjcH_fuvPseTIj1tgva9L2yxg2hpkIAQvqVJnr3h27c4G26LikuSyxkwZN6OCrtXQjetPXOd1vlf2uE-pBiXdWnFJN9PNqgu6gOf_-D99ApbnE</recordid><startdate>20231021</startdate><enddate>20231021</enddate><creator>Pederson, Mark R.</creator><creator>Withanage, Kushantha P. K.</creator><creator>Hooshmand, Zahra</creator><creator>Johnson, Alex I.</creator><creator>Baruah, Tunna</creator><creator>Yamamoto, Yoh</creator><creator>Zope, Rajendra R.</creator><creator>Kao, Der-You</creator><creator>Shukla, Priyanka B.</creator><creator>Johnson, J. Karl</creator><creator>Peralta, Juan E.</creator><creator>Jackson, Koblar A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2849-8472</orcidid><orcidid>https://orcid.org/0000-0002-5052-5505</orcidid><orcidid>https://orcid.org/0000-0002-1415-7565</orcidid><orcidid>https://orcid.org/0000-0002-3608-8003</orcidid><orcidid>https://orcid.org/0000-0002-5342-7978</orcidid><orcidid>https://orcid.org/0000-0002-1236-7438</orcidid><orcidid>https://orcid.org/0000-0002-9599-206X</orcidid><orcidid>https://orcid.org/0000-0002-4626-6491</orcidid><orcidid>https://orcid.org/0000-0002-2602-8146</orcidid><orcidid>https://orcid.org/0000-0002-3596-6409</orcidid><orcidid>https://orcid.org/0000-0002-9965-5247</orcidid></search><sort><creationdate>20231021</creationdate><title>Use of FLOSIC for understanding anion-solvent interactions</title><author>Pederson, Mark R. ; Withanage, Kushantha P. K. ; Hooshmand, Zahra ; Johnson, Alex I. ; Baruah, Tunna ; Yamamoto, Yoh ; Zope, Rajendra R. ; Kao, Der-You ; Shukla, Priyanka B. ; Johnson, J. Karl ; Peralta, Juan E. ; Jackson, Koblar A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-c0f24c8eaac7119150acdce14b05703981b8d624087398686527a1df1b2a25893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anions</topic><topic>Approximation</topic><topic>Atmospheric models</topic><topic>Charge density</topic><topic>Charge transfer</topic><topic>Eigenvalues</topic><topic>Electronic structure</topic><topic>Energy levels</topic><topic>Isotope ratios</topic><topic>Mathematical analysis</topic><topic>Solvents</topic><topic>Water baths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pederson, Mark R.</creatorcontrib><creatorcontrib>Withanage, Kushantha P. K.</creatorcontrib><creatorcontrib>Hooshmand, Zahra</creatorcontrib><creatorcontrib>Johnson, Alex I.</creatorcontrib><creatorcontrib>Baruah, Tunna</creatorcontrib><creatorcontrib>Yamamoto, Yoh</creatorcontrib><creatorcontrib>Zope, Rajendra R.</creatorcontrib><creatorcontrib>Kao, Der-You</creatorcontrib><creatorcontrib>Shukla, Priyanka B.</creatorcontrib><creatorcontrib>Johnson, J. Karl</creatorcontrib><creatorcontrib>Peralta, Juan E.</creatorcontrib><creatorcontrib>Jackson, Koblar A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pederson, Mark R.</au><au>Withanage, Kushantha P. K.</au><au>Hooshmand, Zahra</au><au>Johnson, Alex I.</au><au>Baruah, Tunna</au><au>Yamamoto, Yoh</au><au>Zope, Rajendra R.</au><au>Kao, Der-You</au><au>Shukla, Priyanka B.</au><au>Johnson, J. Karl</au><au>Peralta, Juan E.</au><au>Jackson, Koblar A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of FLOSIC for understanding anion-solvent interactions</atitle><jtitle>The Journal of chemical physics</jtitle><date>2023-10-21</date><risdate>2023</risdate><volume>159</volume><issue>15</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>An Achille’s heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighboring complexes that are not expected to accept charge. A trianionic example, [Cr(C2O4)3]3−, is of interest for constraining models linking Cr isotope ratios in rock samples to oxygen levels in Earth’s atmosphere over geological timescales. Here we describe how crowd sourcing can be used to carry out self-consistent Fermi–Löwdin–Orbital-Self-Interaction corrected calculations (FLOSIC) on this trianion in solution. The calculations give a physically correct description of the electronic structure of the trianion and water. In contrast, uncorrected local density approximation (LDA) calculations result in approximately half of the anion charge being transferred to the water bath due to the effects of self-interaction error. Use of group-theory and the intrinsic sparsity of the theory enables calculations roughly 125 times faster than our initial implementation in the large N limit reached here. By integrating charge density densities and Coulomb potentials over regions of space and analyzing core-level shifts of the Cr and O atoms as a function of position and functional, we unambiguously show that FLOSIC, relative to LDA, reverses incorrect solute-solvent charge transfer in the trianion-water complex. In comparison to other functionals investigated herein, including Hartree–Fock and the local density approximation, the FLOSIC Cr 1s eigenvalues provide the best agreement with experimental core ionization energies.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0172300</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2849-8472</orcidid><orcidid>https://orcid.org/0000-0002-5052-5505</orcidid><orcidid>https://orcid.org/0000-0002-1415-7565</orcidid><orcidid>https://orcid.org/0000-0002-3608-8003</orcidid><orcidid>https://orcid.org/0000-0002-5342-7978</orcidid><orcidid>https://orcid.org/0000-0002-1236-7438</orcidid><orcidid>https://orcid.org/0000-0002-9599-206X</orcidid><orcidid>https://orcid.org/0000-0002-4626-6491</orcidid><orcidid>https://orcid.org/0000-0002-2602-8146</orcidid><orcidid>https://orcid.org/0000-0002-3596-6409</orcidid><orcidid>https://orcid.org/0000-0002-9965-5247</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-10, Vol.159 (15) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0172300 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Anions Approximation Atmospheric models Charge density Charge transfer Eigenvalues Electronic structure Energy levels Isotope ratios Mathematical analysis Solvents Water baths |
title | Use of FLOSIC for understanding anion-solvent interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20FLOSIC%20for%20understanding%20anion-solvent%20interactions&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Pederson,%20Mark%20R.&rft.date=2023-10-21&rft.volume=159&rft.issue=15&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0172300&rft_dat=%3Cproquest_scita%3E2879413937%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-c0f24c8eaac7119150acdce14b05703981b8d624087398686527a1df1b2a25893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2879413937&rft_id=info:pmid/&rfr_iscdi=true |