Loading…

A comprehensive survey of machine learning based mobile data traffic prediction models for 5G cellular networks

The advanced progression of mobile technology leads to a dramatic expansion in cellular data traffic (DT). Especially, the development of precise time series model in a 5G cellular network, becomes indispensable to increase the quality of services (QoS) and forecast cellular DT. The cellular DT pred...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohan, R. Raj, Vijayalakshmi, K., Augustine, P. John, Venkatesh, R., Nayagam, M. Gomathy, Jegajohi, B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2816
creator Mohan, R. Raj
Vijayalakshmi, K.
Augustine, P. John
Venkatesh, R.
Nayagam, M. Gomathy
Jegajohi, B.
description The advanced progression of mobile technology leads to a dramatic expansion in cellular data traffic (DT). Especially, the development of precise time series model in a 5G cellular network, becomes indispensable to increase the quality of services (QoS) and forecast cellular DT. The cellular DT predictive models allow the operator in adapting to the traffic demand of the networks with user experience and better resource usage. Furthermore, owing to the characteristics of the higher heterogeneities amongst a number of base stations with traffic load, the cellular DT predictive model becomes challenging. Thus, the study develops a detailed analysis of artificial intelligence (AI) based techniques to predict mobile DT. An extensive analysis of existing ML model has been presented for the cellular DT prediction in 5G network. Additionally, a wide-ranging description of the advancement of mobile networks is provided. Likewise, the present approaches are studied in different ways including underlying methodologies, merits, major objectives, performance measures, and inferences. Also, wide-ranging experimental analyses of the surveyed methods have been taking place for recognizing the exclusive features of all approaches. Lastly, an overview of future directions and challenging issues are extensively discussed.
doi_str_mv 10.1063/5.0177504
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0177504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973254669</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1684-70f6313a8201af33955dcad4b6d2d1cb8f30045af89b92d3d82c55d676c0637d3</originalsourceid><addsrcrecordid>eNotkMtKAzEUhoMoWKsL3yDgTpiayySZWZaiVSi4UXAXMrnY1MxkTGYqfXuntKuzON9_Lh8A9xgtMOL0iS0QFoKh8gLMMGO4EBzzSzBDqC4LUtKva3CT8w4hUgtRzUBcQh3bPtmt7bLfW5jHtLcHGB1sld76zsJgVep89w0bla2BbWx8sNCoQcEhKee8hlPeeD342E1tY0OGLibI1lDbEMagEuzs8BfTT74FV06FbO_OdQ4-X54_Vq_F5n39tlpuih7zqiwEcpxiqiqCsHKU1owZrUzZcEMM1k3lKEIlU66qm5oYaiqiJ4QLricLwtA5eDjN7VP8HW0e5C6OqZtWyulzSljJeT1Rjycqaz-o4_2yT75V6SAxkkehksmzUPoPTXlocg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2973254669</pqid></control><display><type>conference_proceeding</type><title>A comprehensive survey of machine learning based mobile data traffic prediction models for 5G cellular networks</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mohan, R. Raj ; Vijayalakshmi, K. ; Augustine, P. John ; Venkatesh, R. ; Nayagam, M. Gomathy ; Jegajohi, B.</creator><contributor>Singh, Ravendra ; Bhadoria, Vikas Singh ; Shouran, Mokhtar ; Ohene-Akoto, Ing. Justice ; Arunprasad, G ; Ambikapathy, A</contributor><creatorcontrib>Mohan, R. Raj ; Vijayalakshmi, K. ; Augustine, P. John ; Venkatesh, R. ; Nayagam, M. Gomathy ; Jegajohi, B. ; Singh, Ravendra ; Bhadoria, Vikas Singh ; Shouran, Mokhtar ; Ohene-Akoto, Ing. Justice ; Arunprasad, G ; Ambikapathy, A</creatorcontrib><description>The advanced progression of mobile technology leads to a dramatic expansion in cellular data traffic (DT). Especially, the development of precise time series model in a 5G cellular network, becomes indispensable to increase the quality of services (QoS) and forecast cellular DT. The cellular DT predictive models allow the operator in adapting to the traffic demand of the networks with user experience and better resource usage. Furthermore, owing to the characteristics of the higher heterogeneities amongst a number of base stations with traffic load, the cellular DT predictive model becomes challenging. Thus, the study develops a detailed analysis of artificial intelligence (AI) based techniques to predict mobile DT. An extensive analysis of existing ML model has been presented for the cellular DT prediction in 5G network. Additionally, a wide-ranging description of the advancement of mobile networks is provided. Likewise, the present approaches are studied in different ways including underlying methodologies, merits, major objectives, performance measures, and inferences. Also, wide-ranging experimental analyses of the surveyed methods have been taking place for recognizing the exclusive features of all approaches. Lastly, an overview of future directions and challenging issues are extensively discussed.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0177504</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>5G mobile communication ; Artificial intelligence ; Cellular communication ; Communications traffic ; Machine learning ; Prediction models ; Quality of service architectures ; Traffic models ; User experience ; Wireless networks</subject><ispartof>AIP Conference Proceedings, 2024, Vol.2816 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2024 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Singh, Ravendra</contributor><contributor>Bhadoria, Vikas Singh</contributor><contributor>Shouran, Mokhtar</contributor><contributor>Ohene-Akoto, Ing. Justice</contributor><contributor>Arunprasad, G</contributor><contributor>Ambikapathy, A</contributor><creatorcontrib>Mohan, R. Raj</creatorcontrib><creatorcontrib>Vijayalakshmi, K.</creatorcontrib><creatorcontrib>Augustine, P. John</creatorcontrib><creatorcontrib>Venkatesh, R.</creatorcontrib><creatorcontrib>Nayagam, M. Gomathy</creatorcontrib><creatorcontrib>Jegajohi, B.</creatorcontrib><title>A comprehensive survey of machine learning based mobile data traffic prediction models for 5G cellular networks</title><title>AIP Conference Proceedings</title><description>The advanced progression of mobile technology leads to a dramatic expansion in cellular data traffic (DT). Especially, the development of precise time series model in a 5G cellular network, becomes indispensable to increase the quality of services (QoS) and forecast cellular DT. The cellular DT predictive models allow the operator in adapting to the traffic demand of the networks with user experience and better resource usage. Furthermore, owing to the characteristics of the higher heterogeneities amongst a number of base stations with traffic load, the cellular DT predictive model becomes challenging. Thus, the study develops a detailed analysis of artificial intelligence (AI) based techniques to predict mobile DT. An extensive analysis of existing ML model has been presented for the cellular DT prediction in 5G network. Additionally, a wide-ranging description of the advancement of mobile networks is provided. Likewise, the present approaches are studied in different ways including underlying methodologies, merits, major objectives, performance measures, and inferences. Also, wide-ranging experimental analyses of the surveyed methods have been taking place for recognizing the exclusive features of all approaches. Lastly, an overview of future directions and challenging issues are extensively discussed.</description><subject>5G mobile communication</subject><subject>Artificial intelligence</subject><subject>Cellular communication</subject><subject>Communications traffic</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>Quality of service architectures</subject><subject>Traffic models</subject><subject>User experience</subject><subject>Wireless networks</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtKAzEUhoMoWKsL3yDgTpiayySZWZaiVSi4UXAXMrnY1MxkTGYqfXuntKuzON9_Lh8A9xgtMOL0iS0QFoKh8gLMMGO4EBzzSzBDqC4LUtKva3CT8w4hUgtRzUBcQh3bPtmt7bLfW5jHtLcHGB1sld76zsJgVep89w0bla2BbWx8sNCoQcEhKee8hlPeeD342E1tY0OGLibI1lDbEMagEuzs8BfTT74FV06FbO_OdQ4-X54_Vq_F5n39tlpuih7zqiwEcpxiqiqCsHKU1owZrUzZcEMM1k3lKEIlU66qm5oYaiqiJ4QLricLwtA5eDjN7VP8HW0e5C6OqZtWyulzSljJeT1Rjycqaz-o4_2yT75V6SAxkkehksmzUPoPTXlocg</recordid><startdate>20240322</startdate><enddate>20240322</enddate><creator>Mohan, R. Raj</creator><creator>Vijayalakshmi, K.</creator><creator>Augustine, P. John</creator><creator>Venkatesh, R.</creator><creator>Nayagam, M. Gomathy</creator><creator>Jegajohi, B.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240322</creationdate><title>A comprehensive survey of machine learning based mobile data traffic prediction models for 5G cellular networks</title><author>Mohan, R. Raj ; Vijayalakshmi, K. ; Augustine, P. John ; Venkatesh, R. ; Nayagam, M. Gomathy ; Jegajohi, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1684-70f6313a8201af33955dcad4b6d2d1cb8f30045af89b92d3d82c55d676c0637d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G mobile communication</topic><topic>Artificial intelligence</topic><topic>Cellular communication</topic><topic>Communications traffic</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>Quality of service architectures</topic><topic>Traffic models</topic><topic>User experience</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohan, R. Raj</creatorcontrib><creatorcontrib>Vijayalakshmi, K.</creatorcontrib><creatorcontrib>Augustine, P. John</creatorcontrib><creatorcontrib>Venkatesh, R.</creatorcontrib><creatorcontrib>Nayagam, M. Gomathy</creatorcontrib><creatorcontrib>Jegajohi, B.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohan, R. Raj</au><au>Vijayalakshmi, K.</au><au>Augustine, P. John</au><au>Venkatesh, R.</au><au>Nayagam, M. Gomathy</au><au>Jegajohi, B.</au><au>Singh, Ravendra</au><au>Bhadoria, Vikas Singh</au><au>Shouran, Mokhtar</au><au>Ohene-Akoto, Ing. Justice</au><au>Arunprasad, G</au><au>Ambikapathy, A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A comprehensive survey of machine learning based mobile data traffic prediction models for 5G cellular networks</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-03-22</date><risdate>2024</risdate><volume>2816</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The advanced progression of mobile technology leads to a dramatic expansion in cellular data traffic (DT). Especially, the development of precise time series model in a 5G cellular network, becomes indispensable to increase the quality of services (QoS) and forecast cellular DT. The cellular DT predictive models allow the operator in adapting to the traffic demand of the networks with user experience and better resource usage. Furthermore, owing to the characteristics of the higher heterogeneities amongst a number of base stations with traffic load, the cellular DT predictive model becomes challenging. Thus, the study develops a detailed analysis of artificial intelligence (AI) based techniques to predict mobile DT. An extensive analysis of existing ML model has been presented for the cellular DT prediction in 5G network. Additionally, a wide-ranging description of the advancement of mobile networks is provided. Likewise, the present approaches are studied in different ways including underlying methodologies, merits, major objectives, performance measures, and inferences. Also, wide-ranging experimental analyses of the surveyed methods have been taking place for recognizing the exclusive features of all approaches. Lastly, an overview of future directions and challenging issues are extensively discussed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0177504</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.2816 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0177504
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects 5G mobile communication
Artificial intelligence
Cellular communication
Communications traffic
Machine learning
Prediction models
Quality of service architectures
Traffic models
User experience
Wireless networks
title A comprehensive survey of machine learning based mobile data traffic prediction models for 5G cellular networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20comprehensive%20survey%20of%20machine%20learning%20based%20mobile%20data%20traffic%20prediction%20models%20for%205G%20cellular%20networks&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Mohan,%20R.%20Raj&rft.date=2024-03-22&rft.volume=2816&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0177504&rft_dat=%3Cproquest_scita%3E2973254669%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1684-70f6313a8201af33955dcad4b6d2d1cb8f30045af89b92d3d82c55d676c0637d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2973254669&rft_id=info:pmid/&rfr_iscdi=true