Loading…

Bio-inspired algorithms for energy load forecasting: A review

Energy load forecasting is a systematic method of predicting future loads in advance to maintain a balance between energy demand and supply. Sustainable energy development is critical in energy design, planning, generation, transmission, and distribution, which leads to computational complexities in...

Full description

Saved in:
Bibliographic Details
Main Authors: Chandrasekaran, Radhika, Paramasivan, Senthil Kumar
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2802
creator Chandrasekaran, Radhika
Paramasivan, Senthil Kumar
description Energy load forecasting is a systematic method of predicting future loads in advance to maintain a balance between energy demand and supply. Sustainable energy development is critical in energy design, planning, generation, transmission, and distribution, which leads to computational complexities in conventional methods when it is non-linear. Bio-inspired optimization algorithms are part of artificial intelligence that is inspired by the biological behavior and evolutionary principles of nature. Due to advancements in artificial intelligence, an increasing number of heuristic optimization techniques have resulted in the efficient handling of complex problems. The complexities in the accurate prediction of electricity can be achieved with evolutionary algorithms and swarm intelligence optimization algorithms. It avoids unnecessary expenditure, overestimation, and underestimation of electric energy and maximizes capacity utilization. This paper reviews recent studies on population-based optimization techniques to handle complexities in energy load forecasting and smart energy management.
doi_str_mv 10.1063/5.0183245
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0183245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918338388</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1685-7c43c97eddb521ee32f5d12ff66db484ec41feba0a8ea4c10dbf86d96dd765653</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRMFYP_oOANyF1v7MRPNTiFxS8KHhbNtl345Y0G3dTpf_elPY0DDzMMIPQNcFzgiW7E3NMFKNcnKCMCEGKUhJ5ijKMK15Qzr7O0UVKa4xpVZYqQw-PPhS-T4OPYHPTtSH68XuTchdiDj3Edpd3wdi9h8ak0fftfb7II_x6-LtEZ850Ca6OOkOfz08fy9di9f7ytlysioFIJYqy4aypSrC2FpQAMOqEJdQ5KW3NFYeGEwe1wUaB4Q3BtnZK2kpaW0ohBZuhm0PuEMPPFtKo12Eb-6lS02rayxRTaqJuD1Rq_GhGH3o9RL8xcacJ1vt7tNDHe9g_zXFW-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2918338388</pqid></control><display><type>conference_proceeding</type><title>Bio-inspired algorithms for energy load forecasting: A review</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Chandrasekaran, Radhika ; Paramasivan, Senthil Kumar</creator><contributor>Gervasi, Osvaldo ; Jaichandran, R. ; Kiruthika, S. Usha ; Raja, S. Kanaga Suba</contributor><creatorcontrib>Chandrasekaran, Radhika ; Paramasivan, Senthil Kumar ; Gervasi, Osvaldo ; Jaichandran, R. ; Kiruthika, S. Usha ; Raja, S. Kanaga Suba</creatorcontrib><description>Energy load forecasting is a systematic method of predicting future loads in advance to maintain a balance between energy demand and supply. Sustainable energy development is critical in energy design, planning, generation, transmission, and distribution, which leads to computational complexities in conventional methods when it is non-linear. Bio-inspired optimization algorithms are part of artificial intelligence that is inspired by the biological behavior and evolutionary principles of nature. Due to advancements in artificial intelligence, an increasing number of heuristic optimization techniques have resulted in the efficient handling of complex problems. The complexities in the accurate prediction of electricity can be achieved with evolutionary algorithms and swarm intelligence optimization algorithms. It avoids unnecessary expenditure, overestimation, and underestimation of electric energy and maximizes capacity utilization. This paper reviews recent studies on population-based optimization techniques to handle complexities in energy load forecasting and smart energy management.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0183245</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial intelligence ; Electrical loads ; Energy development ; Energy management ; Evolutionary algorithms ; Forecasting ; Optimization ; Swarm intelligence</subject><ispartof>AIP Conference Proceedings, 2024, Vol.2802 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Gervasi, Osvaldo</contributor><contributor>Jaichandran, R.</contributor><contributor>Kiruthika, S. Usha</contributor><contributor>Raja, S. Kanaga Suba</contributor><creatorcontrib>Chandrasekaran, Radhika</creatorcontrib><creatorcontrib>Paramasivan, Senthil Kumar</creatorcontrib><title>Bio-inspired algorithms for energy load forecasting: A review</title><title>AIP Conference Proceedings</title><description>Energy load forecasting is a systematic method of predicting future loads in advance to maintain a balance between energy demand and supply. Sustainable energy development is critical in energy design, planning, generation, transmission, and distribution, which leads to computational complexities in conventional methods when it is non-linear. Bio-inspired optimization algorithms are part of artificial intelligence that is inspired by the biological behavior and evolutionary principles of nature. Due to advancements in artificial intelligence, an increasing number of heuristic optimization techniques have resulted in the efficient handling of complex problems. The complexities in the accurate prediction of electricity can be achieved with evolutionary algorithms and swarm intelligence optimization algorithms. It avoids unnecessary expenditure, overestimation, and underestimation of electric energy and maximizes capacity utilization. This paper reviews recent studies on population-based optimization techniques to handle complexities in energy load forecasting and smart energy management.</description><subject>Artificial intelligence</subject><subject>Electrical loads</subject><subject>Energy development</subject><subject>Energy management</subject><subject>Evolutionary algorithms</subject><subject>Forecasting</subject><subject>Optimization</subject><subject>Swarm intelligence</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1Lw0AYhBdRMFYP_oOANyF1v7MRPNTiFxS8KHhbNtl345Y0G3dTpf_elPY0DDzMMIPQNcFzgiW7E3NMFKNcnKCMCEGKUhJ5ijKMK15Qzr7O0UVKa4xpVZYqQw-PPhS-T4OPYHPTtSH68XuTchdiDj3Edpd3wdi9h8ak0fftfb7II_x6-LtEZ850Ca6OOkOfz08fy9di9f7ytlysioFIJYqy4aypSrC2FpQAMOqEJdQ5KW3NFYeGEwe1wUaB4Q3BtnZK2kpaW0ohBZuhm0PuEMPPFtKo12Eb-6lS02rayxRTaqJuD1Rq_GhGH3o9RL8xcacJ1vt7tNDHe9g_zXFW-A</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Chandrasekaran, Radhika</creator><creator>Paramasivan, Senthil Kumar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240125</creationdate><title>Bio-inspired algorithms for energy load forecasting: A review</title><author>Chandrasekaran, Radhika ; Paramasivan, Senthil Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1685-7c43c97eddb521ee32f5d12ff66db484ec41feba0a8ea4c10dbf86d96dd765653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Electrical loads</topic><topic>Energy development</topic><topic>Energy management</topic><topic>Evolutionary algorithms</topic><topic>Forecasting</topic><topic>Optimization</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekaran, Radhika</creatorcontrib><creatorcontrib>Paramasivan, Senthil Kumar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekaran, Radhika</au><au>Paramasivan, Senthil Kumar</au><au>Gervasi, Osvaldo</au><au>Jaichandran, R.</au><au>Kiruthika, S. Usha</au><au>Raja, S. Kanaga Suba</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bio-inspired algorithms for energy load forecasting: A review</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-01-25</date><risdate>2024</risdate><volume>2802</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Energy load forecasting is a systematic method of predicting future loads in advance to maintain a balance between energy demand and supply. Sustainable energy development is critical in energy design, planning, generation, transmission, and distribution, which leads to computational complexities in conventional methods when it is non-linear. Bio-inspired optimization algorithms are part of artificial intelligence that is inspired by the biological behavior and evolutionary principles of nature. Due to advancements in artificial intelligence, an increasing number of heuristic optimization techniques have resulted in the efficient handling of complex problems. The complexities in the accurate prediction of electricity can be achieved with evolutionary algorithms and swarm intelligence optimization algorithms. It avoids unnecessary expenditure, overestimation, and underestimation of electric energy and maximizes capacity utilization. This paper reviews recent studies on population-based optimization techniques to handle complexities in energy load forecasting and smart energy management.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0183245</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.2802 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0183245
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Artificial intelligence
Electrical loads
Energy development
Energy management
Evolutionary algorithms
Forecasting
Optimization
Swarm intelligence
title Bio-inspired algorithms for energy load forecasting: A review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bio-inspired%20algorithms%20for%20energy%20load%20forecasting:%20A%20review&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Chandrasekaran,%20Radhika&rft.date=2024-01-25&rft.volume=2802&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0183245&rft_dat=%3Cproquest_scita%3E2918338388%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1685-7c43c97eddb521ee32f5d12ff66db484ec41feba0a8ea4c10dbf86d96dd765653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918338388&rft_id=info:pmid/&rfr_iscdi=true