Loading…
Vision-based atopic dermatitis detection
Atopic dermatitis is a chronic disease that makes skin red and itchy. The atopic dermatitis extremity is primarily evaluated on visual inspection by medical practitioners. There is no standard and automated method for evaluating atopic dermatitis severity. This paper proposes atopic dermatitis detec...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2938 |
creator | Madake, Jyoti Rathod, Sagar Shelgaonkar, Varda Samale, Snehal Bhatlwande, Shripad Shilaskar, Swati |
description | Atopic dermatitis is a chronic disease that makes skin red and itchy. The atopic dermatitis extremity is primarily evaluated on visual inspection by medical practitioners. There is no standard and automated method for evaluating atopic dermatitis severity. This paper proposes atopic dermatitis detection using computer vision and machine learning-based techniques. The proposed method combines feature extraction using GLCM-based Haralick features and Light Gradient Boosting Machine Classifier. This paper represents the effectiveness of using a computer vision-based approach for atopic dermatitis detection with a medium-scale dataset and its potential for dermatitis classification with 83% accuracy. |
doi_str_mv | 10.1063/5.0186847 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0186847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904737290</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-5629832b067e1ecbd94200e6700eba5ce3d4241380c474328a6047b4f22ba8af3</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMouFYPfoOCFxFSX_Lyb49SrAoFLyreQpLNQortrpv04Lc3pb28eYcfM8MQcstgwUDho1wAM8oIfUYaJiWjWjF1ThqAVlAu8PuSXOW8AeCt1qYh918pp2FHvcuxm7syjCnMuzhtXUkl5fqWGEolrslF735yvDnpjHyunj-Wr3T9_vK2fFrTkSEWKhVvDXIPSkcWg-9awQGi0vV4J0PETnDB0EAQWiA3ToHQXvSce2dcjzNyd_Qdp-F3H3Oxm2E_7Wqk5W1FUVep1MORyiEVd-hnxylt3fRnGdjDElba0xL4DzndTfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2904737290</pqid></control><display><type>conference_proceeding</type><title>Vision-based atopic dermatitis detection</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Madake, Jyoti ; Rathod, Sagar ; Shelgaonkar, Varda ; Samale, Snehal ; Bhatlwande, Shripad ; Shilaskar, Swati</creator><contributor>Tomar, Pradeep ; Nayyar, Anand ; Solanki, Arun</contributor><creatorcontrib>Madake, Jyoti ; Rathod, Sagar ; Shelgaonkar, Varda ; Samale, Snehal ; Bhatlwande, Shripad ; Shilaskar, Swati ; Tomar, Pradeep ; Nayyar, Anand ; Solanki, Arun</creatorcontrib><description>Atopic dermatitis is a chronic disease that makes skin red and itchy. The atopic dermatitis extremity is primarily evaluated on visual inspection by medical practitioners. There is no standard and automated method for evaluating atopic dermatitis severity. This paper proposes atopic dermatitis detection using computer vision and machine learning-based techniques. The proposed method combines feature extraction using GLCM-based Haralick features and Light Gradient Boosting Machine Classifier. This paper represents the effectiveness of using a computer vision-based approach for atopic dermatitis detection with a medium-scale dataset and its potential for dermatitis classification with 83% accuracy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0186847</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer vision ; Dermatitis ; Feature extraction ; Machine learning</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2938 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Tomar, Pradeep</contributor><contributor>Nayyar, Anand</contributor><contributor>Solanki, Arun</contributor><creatorcontrib>Madake, Jyoti</creatorcontrib><creatorcontrib>Rathod, Sagar</creatorcontrib><creatorcontrib>Shelgaonkar, Varda</creatorcontrib><creatorcontrib>Samale, Snehal</creatorcontrib><creatorcontrib>Bhatlwande, Shripad</creatorcontrib><creatorcontrib>Shilaskar, Swati</creatorcontrib><title>Vision-based atopic dermatitis detection</title><title>AIP Conference Proceedings</title><description>Atopic dermatitis is a chronic disease that makes skin red and itchy. The atopic dermatitis extremity is primarily evaluated on visual inspection by medical practitioners. There is no standard and automated method for evaluating atopic dermatitis severity. This paper proposes atopic dermatitis detection using computer vision and machine learning-based techniques. The proposed method combines feature extraction using GLCM-based Haralick features and Light Gradient Boosting Machine Classifier. This paper represents the effectiveness of using a computer vision-based approach for atopic dermatitis detection with a medium-scale dataset and its potential for dermatitis classification with 83% accuracy.</description><subject>Computer vision</subject><subject>Dermatitis</subject><subject>Feature extraction</subject><subject>Machine learning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LAzEUxIMouFYPfoOCFxFSX_Lyb49SrAoFLyreQpLNQortrpv04Lc3pb28eYcfM8MQcstgwUDho1wAM8oIfUYaJiWjWjF1ThqAVlAu8PuSXOW8AeCt1qYh918pp2FHvcuxm7syjCnMuzhtXUkl5fqWGEolrslF735yvDnpjHyunj-Wr3T9_vK2fFrTkSEWKhVvDXIPSkcWg-9awQGi0vV4J0PETnDB0EAQWiA3ToHQXvSce2dcjzNyd_Qdp-F3H3Oxm2E_7Wqk5W1FUVep1MORyiEVd-hnxylt3fRnGdjDElba0xL4DzndTfs</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Madake, Jyoti</creator><creator>Rathod, Sagar</creator><creator>Shelgaonkar, Varda</creator><creator>Samale, Snehal</creator><creator>Bhatlwande, Shripad</creator><creator>Shilaskar, Swati</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231222</creationdate><title>Vision-based atopic dermatitis detection</title><author>Madake, Jyoti ; Rathod, Sagar ; Shelgaonkar, Varda ; Samale, Snehal ; Bhatlwande, Shripad ; Shilaskar, Swati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-5629832b067e1ecbd94200e6700eba5ce3d4241380c474328a6047b4f22ba8af3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer vision</topic><topic>Dermatitis</topic><topic>Feature extraction</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madake, Jyoti</creatorcontrib><creatorcontrib>Rathod, Sagar</creatorcontrib><creatorcontrib>Shelgaonkar, Varda</creatorcontrib><creatorcontrib>Samale, Snehal</creatorcontrib><creatorcontrib>Bhatlwande, Shripad</creatorcontrib><creatorcontrib>Shilaskar, Swati</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madake, Jyoti</au><au>Rathod, Sagar</au><au>Shelgaonkar, Varda</au><au>Samale, Snehal</au><au>Bhatlwande, Shripad</au><au>Shilaskar, Swati</au><au>Tomar, Pradeep</au><au>Nayyar, Anand</au><au>Solanki, Arun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vision-based atopic dermatitis detection</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-12-22</date><risdate>2023</risdate><volume>2938</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Atopic dermatitis is a chronic disease that makes skin red and itchy. The atopic dermatitis extremity is primarily evaluated on visual inspection by medical practitioners. There is no standard and automated method for evaluating atopic dermatitis severity. This paper proposes atopic dermatitis detection using computer vision and machine learning-based techniques. The proposed method combines feature extraction using GLCM-based Haralick features and Light Gradient Boosting Machine Classifier. This paper represents the effectiveness of using a computer vision-based approach for atopic dermatitis detection with a medium-scale dataset and its potential for dermatitis classification with 83% accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0186847</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2023, Vol.2938 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0186847 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Computer vision Dermatitis Feature extraction Machine learning |
title | Vision-based atopic dermatitis detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vision-based%20atopic%20dermatitis%20detection&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Madake,%20Jyoti&rft.date=2023-12-22&rft.volume=2938&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0186847&rft_dat=%3Cproquest_scita%3E2904737290%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p133t-5629832b067e1ecbd94200e6700eba5ce3d4241380c474328a6047b4f22ba8af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904737290&rft_id=info:pmid/&rfr_iscdi=true |