Loading…

Vision-based atopic dermatitis detection

Atopic dermatitis is a chronic disease that makes skin red and itchy. The atopic dermatitis extremity is primarily evaluated on visual inspection by medical practitioners. There is no standard and automated method for evaluating atopic dermatitis severity. This paper proposes atopic dermatitis detec...

Full description

Saved in:
Bibliographic Details
Main Authors: Madake, Jyoti, Rathod, Sagar, Shelgaonkar, Varda, Samale, Snehal, Bhatlwande, Shripad, Shilaskar, Swati
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2938
creator Madake, Jyoti
Rathod, Sagar
Shelgaonkar, Varda
Samale, Snehal
Bhatlwande, Shripad
Shilaskar, Swati
description Atopic dermatitis is a chronic disease that makes skin red and itchy. The atopic dermatitis extremity is primarily evaluated on visual inspection by medical practitioners. There is no standard and automated method for evaluating atopic dermatitis severity. This paper proposes atopic dermatitis detection using computer vision and machine learning-based techniques. The proposed method combines feature extraction using GLCM-based Haralick features and Light Gradient Boosting Machine Classifier. This paper represents the effectiveness of using a computer vision-based approach for atopic dermatitis detection with a medium-scale dataset and its potential for dermatitis classification with 83% accuracy.
doi_str_mv 10.1063/5.0186847
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0186847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904737290</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-5629832b067e1ecbd94200e6700eba5ce3d4241380c474328a6047b4f22ba8af3</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMouFYPfoOCFxFSX_Lyb49SrAoFLyreQpLNQortrpv04Lc3pb28eYcfM8MQcstgwUDho1wAM8oIfUYaJiWjWjF1ThqAVlAu8PuSXOW8AeCt1qYh918pp2FHvcuxm7syjCnMuzhtXUkl5fqWGEolrslF735yvDnpjHyunj-Wr3T9_vK2fFrTkSEWKhVvDXIPSkcWg-9awQGi0vV4J0PETnDB0EAQWiA3ToHQXvSce2dcjzNyd_Qdp-F3H3Oxm2E_7Wqk5W1FUVep1MORyiEVd-hnxylt3fRnGdjDElba0xL4DzndTfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2904737290</pqid></control><display><type>conference_proceeding</type><title>Vision-based atopic dermatitis detection</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Madake, Jyoti ; Rathod, Sagar ; Shelgaonkar, Varda ; Samale, Snehal ; Bhatlwande, Shripad ; Shilaskar, Swati</creator><contributor>Tomar, Pradeep ; Nayyar, Anand ; Solanki, Arun</contributor><creatorcontrib>Madake, Jyoti ; Rathod, Sagar ; Shelgaonkar, Varda ; Samale, Snehal ; Bhatlwande, Shripad ; Shilaskar, Swati ; Tomar, Pradeep ; Nayyar, Anand ; Solanki, Arun</creatorcontrib><description>Atopic dermatitis is a chronic disease that makes skin red and itchy. The atopic dermatitis extremity is primarily evaluated on visual inspection by medical practitioners. There is no standard and automated method for evaluating atopic dermatitis severity. This paper proposes atopic dermatitis detection using computer vision and machine learning-based techniques. The proposed method combines feature extraction using GLCM-based Haralick features and Light Gradient Boosting Machine Classifier. This paper represents the effectiveness of using a computer vision-based approach for atopic dermatitis detection with a medium-scale dataset and its potential for dermatitis classification with 83% accuracy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0186847</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer vision ; Dermatitis ; Feature extraction ; Machine learning</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2938 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Tomar, Pradeep</contributor><contributor>Nayyar, Anand</contributor><contributor>Solanki, Arun</contributor><creatorcontrib>Madake, Jyoti</creatorcontrib><creatorcontrib>Rathod, Sagar</creatorcontrib><creatorcontrib>Shelgaonkar, Varda</creatorcontrib><creatorcontrib>Samale, Snehal</creatorcontrib><creatorcontrib>Bhatlwande, Shripad</creatorcontrib><creatorcontrib>Shilaskar, Swati</creatorcontrib><title>Vision-based atopic dermatitis detection</title><title>AIP Conference Proceedings</title><description>Atopic dermatitis is a chronic disease that makes skin red and itchy. The atopic dermatitis extremity is primarily evaluated on visual inspection by medical practitioners. There is no standard and automated method for evaluating atopic dermatitis severity. This paper proposes atopic dermatitis detection using computer vision and machine learning-based techniques. The proposed method combines feature extraction using GLCM-based Haralick features and Light Gradient Boosting Machine Classifier. This paper represents the effectiveness of using a computer vision-based approach for atopic dermatitis detection with a medium-scale dataset and its potential for dermatitis classification with 83% accuracy.</description><subject>Computer vision</subject><subject>Dermatitis</subject><subject>Feature extraction</subject><subject>Machine learning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LAzEUxIMouFYPfoOCFxFSX_Lyb49SrAoFLyreQpLNQortrpv04Lc3pb28eYcfM8MQcstgwUDho1wAM8oIfUYaJiWjWjF1ThqAVlAu8PuSXOW8AeCt1qYh918pp2FHvcuxm7syjCnMuzhtXUkl5fqWGEolrslF735yvDnpjHyunj-Wr3T9_vK2fFrTkSEWKhVvDXIPSkcWg-9awQGi0vV4J0PETnDB0EAQWiA3ToHQXvSce2dcjzNyd_Qdp-F3H3Oxm2E_7Wqk5W1FUVep1MORyiEVd-hnxylt3fRnGdjDElba0xL4DzndTfs</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Madake, Jyoti</creator><creator>Rathod, Sagar</creator><creator>Shelgaonkar, Varda</creator><creator>Samale, Snehal</creator><creator>Bhatlwande, Shripad</creator><creator>Shilaskar, Swati</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231222</creationdate><title>Vision-based atopic dermatitis detection</title><author>Madake, Jyoti ; Rathod, Sagar ; Shelgaonkar, Varda ; Samale, Snehal ; Bhatlwande, Shripad ; Shilaskar, Swati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-5629832b067e1ecbd94200e6700eba5ce3d4241380c474328a6047b4f22ba8af3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer vision</topic><topic>Dermatitis</topic><topic>Feature extraction</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madake, Jyoti</creatorcontrib><creatorcontrib>Rathod, Sagar</creatorcontrib><creatorcontrib>Shelgaonkar, Varda</creatorcontrib><creatorcontrib>Samale, Snehal</creatorcontrib><creatorcontrib>Bhatlwande, Shripad</creatorcontrib><creatorcontrib>Shilaskar, Swati</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madake, Jyoti</au><au>Rathod, Sagar</au><au>Shelgaonkar, Varda</au><au>Samale, Snehal</au><au>Bhatlwande, Shripad</au><au>Shilaskar, Swati</au><au>Tomar, Pradeep</au><au>Nayyar, Anand</au><au>Solanki, Arun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vision-based atopic dermatitis detection</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-12-22</date><risdate>2023</risdate><volume>2938</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Atopic dermatitis is a chronic disease that makes skin red and itchy. The atopic dermatitis extremity is primarily evaluated on visual inspection by medical practitioners. There is no standard and automated method for evaluating atopic dermatitis severity. This paper proposes atopic dermatitis detection using computer vision and machine learning-based techniques. The proposed method combines feature extraction using GLCM-based Haralick features and Light Gradient Boosting Machine Classifier. This paper represents the effectiveness of using a computer vision-based approach for atopic dermatitis detection with a medium-scale dataset and its potential for dermatitis classification with 83% accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0186847</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2938 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0186847
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Computer vision
Dermatitis
Feature extraction
Machine learning
title Vision-based atopic dermatitis detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vision-based%20atopic%20dermatitis%20detection&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Madake,%20Jyoti&rft.date=2023-12-22&rft.volume=2938&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0186847&rft_dat=%3Cproquest_scita%3E2904737290%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p133t-5629832b067e1ecbd94200e6700eba5ce3d4241380c474328a6047b4f22ba8af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904737290&rft_id=info:pmid/&rfr_iscdi=true