Loading…
A fourth-order compact finite difference method for solving natural convection in rectangular enclosures
A new fourth order compact finite difference method for solving transient natural convection in rectangular enclosures is developed. First, finite difference approximations based on Padé schemes are developed to discretize spatial derivatives in the advection-diffusion equations of vorticity and tem...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2836 |
creator | Leonard, Christopher Harahap, Caesar Ondolan |
description | A new fourth order compact finite difference method for solving transient natural convection in rectangular enclosures is developed. First, finite difference approximations based on Padé schemes are developed to discretize spatial derivatives in the advection-diffusion equations of vorticity and temperature. Then, a different fourth-order compact finite difference method was utilized to solve the Poisson’s equation for the stream function. The system of equations is then time-marched using a fourth-order Runge-Kutta method. The numerical method is then validated by applying it to the natural convection in a square cavity problem. It is shown that good agreement with results of the benchmark solution can be obtained with much fewer grid points. |
doi_str_mv | 10.1063/5.0188442 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0188442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031403572</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1682-96105b90e0ab882c264de35f647290ce0e50cb379841ac3af26a4579136a83cb3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsH_0HAm7B18rnZYyl-QcGLgrclzWbblG2yJtmC_94Ue5qBed6Zd16E7gksCEj2JBZAlOKcXqAZEYJUtSTyEs0AGl5Rzr6v0U1KewDa1LWaod0S92GKeVeF2NmITTiM2mTcO--yxZ3rexutNxYfbN6FrtARpzAcnd9ir_MU9VBE_mhNdsFj53EsrfbbadARF-UQ0hRtukVXvR6SvTvXOfp6ef5cvVXrj9f31XJdjUQqWjWSgNg0YEFvlKKGSt5ZJnrJa9qAsWAFmA2rG8WJNkz3VGou6oYwqRUrkzl6-N87xvAz2ZTbffnPl5MtA0Y4MFHTQj3-U8m4rE_O2zG6g46_LYH2lGQr2nOS7A96JmY7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3031403572</pqid></control><display><type>conference_proceeding</type><title>A fourth-order compact finite difference method for solving natural convection in rectangular enclosures</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Leonard, Christopher ; Harahap, Caesar Ondolan</creator><contributor>Indarto ; Saptoadi, Harwin ; Deendarlianto ; Kamal, Samsul ; Ariyadi, Hifni Mukhtar</contributor><creatorcontrib>Leonard, Christopher ; Harahap, Caesar Ondolan ; Indarto ; Saptoadi, Harwin ; Deendarlianto ; Kamal, Samsul ; Ariyadi, Hifni Mukhtar</creatorcontrib><description>A new fourth order compact finite difference method for solving transient natural convection in rectangular enclosures is developed. First, finite difference approximations based on Padé schemes are developed to discretize spatial derivatives in the advection-diffusion equations of vorticity and temperature. Then, a different fourth-order compact finite difference method was utilized to solve the Poisson’s equation for the stream function. The system of equations is then time-marched using a fourth-order Runge-Kutta method. The numerical method is then validated by applying it to the natural convection in a square cavity problem. It is shown that good agreement with results of the benchmark solution can be obtained with much fewer grid points.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0188442</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Advection-diffusion equation ; Enclosures ; Finite difference method ; Free convection ; Mathematical analysis ; Numerical methods ; Poisson equation ; Runge-Kutta method ; Vorticity</subject><ispartof>AIP conference proceedings, 2024, Vol.2836 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Indarto</contributor><contributor>Saptoadi, Harwin</contributor><contributor>Deendarlianto</contributor><contributor>Kamal, Samsul</contributor><contributor>Ariyadi, Hifni Mukhtar</contributor><creatorcontrib>Leonard, Christopher</creatorcontrib><creatorcontrib>Harahap, Caesar Ondolan</creatorcontrib><title>A fourth-order compact finite difference method for solving natural convection in rectangular enclosures</title><title>AIP conference proceedings</title><description>A new fourth order compact finite difference method for solving transient natural convection in rectangular enclosures is developed. First, finite difference approximations based on Padé schemes are developed to discretize spatial derivatives in the advection-diffusion equations of vorticity and temperature. Then, a different fourth-order compact finite difference method was utilized to solve the Poisson’s equation for the stream function. The system of equations is then time-marched using a fourth-order Runge-Kutta method. The numerical method is then validated by applying it to the natural convection in a square cavity problem. It is shown that good agreement with results of the benchmark solution can be obtained with much fewer grid points.</description><subject>Advection-diffusion equation</subject><subject>Enclosures</subject><subject>Finite difference method</subject><subject>Free convection</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Poisson equation</subject><subject>Runge-Kutta method</subject><subject>Vorticity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEQhoMoWKsH_0HAm7B18rnZYyl-QcGLgrclzWbblG2yJtmC_94Ue5qBed6Zd16E7gksCEj2JBZAlOKcXqAZEYJUtSTyEs0AGl5Rzr6v0U1KewDa1LWaod0S92GKeVeF2NmITTiM2mTcO--yxZ3rexutNxYfbN6FrtARpzAcnd9ir_MU9VBE_mhNdsFj53EsrfbbadARF-UQ0hRtukVXvR6SvTvXOfp6ef5cvVXrj9f31XJdjUQqWjWSgNg0YEFvlKKGSt5ZJnrJa9qAsWAFmA2rG8WJNkz3VGou6oYwqRUrkzl6-N87xvAz2ZTbffnPl5MtA0Y4MFHTQj3-U8m4rE_O2zG6g46_LYH2lGQr2nOS7A96JmY7</recordid><startdate>20240403</startdate><enddate>20240403</enddate><creator>Leonard, Christopher</creator><creator>Harahap, Caesar Ondolan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240403</creationdate><title>A fourth-order compact finite difference method for solving natural convection in rectangular enclosures</title><author>Leonard, Christopher ; Harahap, Caesar Ondolan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1682-96105b90e0ab882c264de35f647290ce0e50cb379841ac3af26a4579136a83cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advection-diffusion equation</topic><topic>Enclosures</topic><topic>Finite difference method</topic><topic>Free convection</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Poisson equation</topic><topic>Runge-Kutta method</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonard, Christopher</creatorcontrib><creatorcontrib>Harahap, Caesar Ondolan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonard, Christopher</au><au>Harahap, Caesar Ondolan</au><au>Indarto</au><au>Saptoadi, Harwin</au><au>Deendarlianto</au><au>Kamal, Samsul</au><au>Ariyadi, Hifni Mukhtar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fourth-order compact finite difference method for solving natural convection in rectangular enclosures</atitle><btitle>AIP conference proceedings</btitle><date>2024-04-03</date><risdate>2024</risdate><volume>2836</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A new fourth order compact finite difference method for solving transient natural convection in rectangular enclosures is developed. First, finite difference approximations based on Padé schemes are developed to discretize spatial derivatives in the advection-diffusion equations of vorticity and temperature. Then, a different fourth-order compact finite difference method was utilized to solve the Poisson’s equation for the stream function. The system of equations is then time-marched using a fourth-order Runge-Kutta method. The numerical method is then validated by applying it to the natural convection in a square cavity problem. It is shown that good agreement with results of the benchmark solution can be obtained with much fewer grid points.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0188442</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2836 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0188442 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Advection-diffusion equation Enclosures Finite difference method Free convection Mathematical analysis Numerical methods Poisson equation Runge-Kutta method Vorticity |
title | A fourth-order compact finite difference method for solving natural convection in rectangular enclosures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fourth-order%20compact%20finite%20difference%20method%20for%20solving%20natural%20convection%20in%20rectangular%20enclosures&rft.btitle=AIP%20conference%20proceedings&rft.au=Leonard,%20Christopher&rft.date=2024-04-03&rft.volume=2836&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0188442&rft_dat=%3Cproquest_scita%3E3031403572%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1682-96105b90e0ab882c264de35f647290ce0e50cb379841ac3af26a4579136a83cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031403572&rft_id=info:pmid/&rfr_iscdi=true |